Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 21(9): e3002319, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37747915

RESUMO

Spontaneous Ca2+ transients of neural cells is a hallmark of the developing nervous system. It is widely accepted that chemical signals, like neurotransmitters, contribute to spontaneous Ca2+ transients in the nervous system. Here, we reveal an additional mechanism of spontaneous Ca2+ transients that is mechanosensitive in the peripheral nervous system (PNS) using intravital imaging of growing dorsal root ganglia (DRG) in zebrafish embryos. GCaMP6s imaging shows that developing DRG satellite glia contain distinct spontaneous Ca2+ transients, classified into simultaneous, isolated, and microdomains. Longitudinal analysis over days in development demonstrates that as DRG satellite glia become more synchronized, isolated Ca2+ transients remain constant. Using a chemical screen, we identify that Ca2+ transients in DRG glia are dependent on mechanical properties, which we confirmed using an experimental application of mechanical force. We find that isolated spontaneous Ca2+ transients of the glia during development is altered by manipulation of mechanosensitive protein Piezo1, which is expressed in the developing ganglia. In contrast, simultaneous Ca2+ transients of DRG satellite glia is not Piezo1-mediated, thus demonstrating that distinct mechanisms mediate subtypes of spontaneous Ca2+ transients. Activating Piezo1 eventually impacts the cell abundance of DRG cells and behaviors that are driven by DRG neurons. Together, our results reveal mechanistically distinct subtypes of Ca2+ transients in satellite glia and introduce mechanobiology as a critical component of spontaneous Ca2+ transients in the developing PNS.


Assuntos
Cálcio , Gânglios Espinais , Animais , Cálcio/metabolismo , Gânglios Espinais/metabolismo , Peixe-Zebra/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Canais Iônicos/metabolismo , Proteínas de Peixe-Zebra/metabolismo
2.
PLoS Biol ; 19(11): e3001444, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34793438

RESUMO

Glial cells are essential for functionality of the nervous system. Growing evidence underscores the importance of astrocytes; however, analogous astroglia in peripheral organs are poorly understood. Using confocal time-lapse imaging, fate mapping, and mutant genesis in a zebrafish model, we identify a neural crest-derived glial cell, termed nexus glia, which utilizes Meteorin signaling via Jak/Stat3 to drive differentiation and regulate heart rate and rhythm. Nexus glia are labeled with gfap, glast, and glutamine synthetase, markers that typically denote astroglia cells. Further, analysis of single-cell sequencing datasets of human and murine hearts across ages reveals astrocyte-like cells, which we confirm through a multispecies approach. We show that cardiac nexus glia at the outflow tract are critical regulators of both the sympathetic and parasympathetic system. These data establish the crucial role of glia on cardiac homeostasis and provide a description of nexus glia in the PNS.


Assuntos
Astrócitos/citologia , Coração/embriologia , Neuroglia/citologia , Animais , Astrócitos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Coração/fisiologia , Frequência Cardíaca/fisiologia , Ventrículos do Coração/metabolismo , Humanos , Camundongos , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Crista Neural/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Sistema Nervoso Parassimpático/fisiologia , Transdução de Sinais , Especificidade da Espécie , Sistema Nervoso Simpático/fisiologia , Peixe-Zebra
3.
Front Cell Neurosci ; 16: 893629, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734217

RESUMO

Oligodendrocytes are the myelinating cell of the CNS and are critical for the functionality of the nervous system. In the packed CNS, we know distinct profiles of oligodendrocytes are present. Here, we used intravital imaging in zebrafish to identify a distinct oligodendrocyte lineage cell (OLC) that resides on the dorsal root ganglia sensory neurons in the spinal cord. Our profiling of OLC cellular dynamics revealed a distinct cell cluster that interacts with peripheral sensory neurons at the dorsal root entry zone (DREZ). With pharmacological, physical and genetic manipulations, we show that the entry of dorsal root ganglia pioneer axons across the DREZ is important to produce sensory located oligodendrocyte lineage cells. These oligodendrocyte lineage cells on peripherally derived sensory neurons display distinct processes that are stable and do not express mbpa. Upon their removal, sensory behavior related to the DRG neurons is abolished. Together, these data support the hypothesis that peripheral neurons at the DREZ can also impact oligodendrocyte development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA