Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurobiol Dis ; 180: 106090, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36934795

RESUMO

Traumatic brain injury (TBI) is associated with mortality and morbidity worldwide. Accumulating pre-clinical and clinical data suggests TBI is the leading extrinsic cause of progressive neurodegeneration. Neurological deterioration after either a single moderate-severe TBI or repetitive mild TBI often resembles dementia in aged populations; however, no currently approved therapies adequately mitigate neurodegeneration. Inflammation correlates with neurodegenerative changes and cognitive dysfunction for years post-TBI, suggesting a potential association between immune activation and both age- and TBI-induced cognitive decline. Inflammaging, a chronic, low-grade sterile inflammation associated with natural aging, promotes cognitive decline. Cellular senescence and the subsequent development of a senescence associated secretory phenotype (SASP) promotes inflammaging and cognitive aging, although the functional association between senescent cells and neurodegeneration is poorly defined after TBI. In this mini-review, we provide an overview of the pre-clinical and clinical evidence linking cellular senescence with poor TBI outcomes. We also discuss the current knowledge and future potential for senotherapeutics, including senolytics and senomorphics, which kill and/or modulate senescent cells, as potential therapeutics after TBI.


Assuntos
Lesões Encefálicas Traumáticas , Envelhecimento Cognitivo , Humanos , Senescência Celular , Lesões Encefálicas Traumáticas/complicações , Inflamação
2.
Mol Psychiatry ; 26(11): 6666-6679, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33859360

RESUMO

A precise fear memory encoding a traumatic event enables an individual to avoid danger and identify safety. An impaired fear memory (contextual amnesia), however, puts the individual at risk of developing posttraumatic stress disorder (PTSD) due to the inability to identify a safe context when encountering trauma-associated cues later in life. Although it is gaining attention that contextual amnesia is a critical etiologic factor for PTSD, there is no treatment currently available that can reverse contextual amnesia, and whether such treatment can prevent the development of PTSD is unknown. Here, we report that (I) a single dose of transcranial photobiomodulation (PBM) applied immediately after tone fear conditioning can reverse contextual amnesia. PBM treatment preserved an appropriately high level of contextual fear memory in rats revisiting the "dangerous" context, while control rats displayed memory impairment. (II) A single dose of PBM applied after memory recall can reduce contextual fear during both contextual and cued memory testing. (III) In a model of complex PTSD with repeated trauma, rats given early PBM interventions efficiently discriminated safety from danger during cued memory testing and, importantly, these rats did not develop PTSD-like symptoms and comorbidities. (IV) Finally, we report that fear extinction was facilitated when PBM was applied in the early intervention window of memory consolidation. Our results demonstrate that PBM treatment applied immediately after a traumatic event or its memory recall can protect contextual fear memory and prevent the development of PTSD-like psychopathological fear in rats.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Animais , Extinção Psicológica , Medo , Memória , Transtornos da Memória/etiologia , Ratos , Transtornos de Estresse Pós-Traumáticos/patologia
3.
Int J Mol Sci ; 23(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35628182

RESUMO

Hemoglobin (Hb) is the oxygen transport protein in erythrocytes. In blood, Hb is a tetramer consisting of two Hb-alpha (Hb-α) chains and two Hb-beta (Hb-ß) chains. A number of studies have also shown that Hb-α is also expressed in neurons in both the rodent and human brain. In the current study, we examined for age-related regulation of neuronal Hb-α and hypoxia in the hippocampus and cerebral cortex of intact male and female mice. In addition, to confirm the role and functions of neuronal Hb-α, we also utilized lentivirus CRISPR interference-based Hb-α knockdown (Hb-α CRISPRi KD) in the non-ischemic and ischemic mouse hippocampus and examined the effect on neuronal oxygenation, as well as induction of hypoxia-inducible factor-1α (HIF-1α) and its downstream pro-apoptotic factors, PUMA and NOXA, and on neuronal survival and neurodegeneration. The results of the study revealed an age-related decrease in neuronal Hb-α levels and correlated increase in hypoxia in the hippocampus and cortex of intact male and female mice. Sex differences were observed with males having higher neuronal Hb-α levels than females in all brain regions at all ages. In vivo Hb-α CRISPRi KD in the mouse hippocampus resulted in increased hypoxia and elevated levels of HIF-1α, PUMA and NOXA in the non-ischemic and ischemic mouse hippocampus, effects that were correlated with a significant decrease in neuronal survival and increased neurodegeneration. As a whole, these findings indicate that neuronal Hb-α decreases with age in mice and has an important role in regulating neuronal oxygenation and neuroprotection.


Assuntos
Hemoglobinas , Neurônios , Animais , Córtex Cerebral/metabolismo , Feminino , Hemoglobinas/metabolismo , Hipocampo/metabolismo , Hipóxia/metabolismo , Masculino , Camundongos , Neurônios/metabolismo
4.
J Neurosci ; 40(50): 9751-9771, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33158962

RESUMO

Expression of the 17ß-estradiol (E2) synthesis enzyme aromatase is highly upregulated in astrocytes following brain injury. However, the precise role of astrocyte-derived E2 in the injured brain remains unclear. In the current study, we generated a glial fibrillary acidic protein (GFAP) promoter-driven aromatase knock-out (GFAP-ARO-KO) mouse model to deplete astrocyte-derived E2 in the brain and determine its roles after global cerebral ischemia (GCI) in male and female mice. GFAP-ARO-KO mice were viable and fertile, with normal gross brain structure, normal morphology, intensity and distribution of astrocytes, normal aromatase expression in neurons, and normal cognitive function basally. In contrast, after GCI, GFAP-ARO-KO mice: (1) lacked the normal elevation of astrocyte aromatase and hippocampal E2 levels; (2) had significantly attenuated reactive astrogliosis; and (3) displayed enhanced neuronal damage, microglia activation, and cognitive deficits. RNA-sequencing (RNA-seq) analysis revealed that the ischemic GFAP-ARO-KO mouse hippocampus failed to upregulate the "A2" panel of reactive astrocyte genes. In addition, the JAK-STAT3 pathway, which is critical for the induction of reactive astrogliosis, was significantly downregulated in the GFAP-ARO-KO hippocampus following GCI. Finally, exogenous E2 administration fully rescued the compromised JAK-STAT3 pathway and reactive astrogliosis, and reversed the enhanced neuronal damage and microglial activation in the GFAP-ARO-KO mice after GCI, suggesting that the defects in the KO mice are because of a loss of E2 rather than an increase in precursor androgens. In conclusion, the current study provides novel genetic evidence for a beneficial role of astrocyte-derived E2 in reactive astrogliosis, microglial activation, and neuroprotection following an ischemic injury to the brain.SIGNIFICANCE STATEMENT Following cerebral ischemia, reactive astrocytes express the enzyme aromatase and produce 17ß-estradiol (E2), although the precise role of astrocyte-derived E2 is poorly understood. In this study, we generated a glial fibrillary acidic protein (GFAP) promoter-driven aromatase knock-out (GFAP-ARO-KO) mouse to deplete astrocyte-derived E2 and elucidate its roles after global cerebral ischemia (GCI). The GFAP-ARO-KO mice exhibited significantly attenuated reactive astrogliosis, as well as enhanced microglial activation, neuronal damage, and cognitive dysfunction after GCI. Transcriptome analysis further revealed that astrocyte-derived E2 was critical for the induction of the JAK-STAT3 signaling pathway, as well as the A2 reactive astrocyte phenotype after ischemia. Collectively, these findings indicate that astrocyte-derived E2 has a key role in the regulation of reactive astrogliosis, microglial activation, and neuroprotection after cerebral ischemia.


Assuntos
Aromatase/genética , Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Estradiol/metabolismo , Gliose/metabolismo , Hipocampo/metabolismo , Animais , Aromatase/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Condicionamento Clássico/fisiologia , Modelos Animais de Doenças , Estradiol/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/genética , Gliose/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Camundongos , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neuroproteção/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
5.
J Neurosci ; 40(38): 7355-7374, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32817249

RESUMO

17ß-Estradiol (E2) is produced from androgens via the action of the enzyme aromatase. E2 is known to be made in neurons in the brain, but the functions of neuron-derived E2 in the ischemic brain are unclear. Here, we used a forebrain neuron-specific aromatase KO (FBN-ARO-KO) mouse model to deplete neuron-derived E2 in the forebrain and determine its roles after global cerebral ischemia. We demonstrated that ovariectomized female FBN-ARO-KO mice exhibited significantly attenuated astrocyte activation, astrocytic aromatization, and decreased hippocampal E2 levels compared with FLOX mice. Furthermore, FBN-ARO-KO mice had exacerbated neuronal damage and worse cognitive dysfunction after global cerebral ischemia. Similar results were observed in intact male mice. RNA-seq analysis revealed alterations in pathways and genes associated with astrocyte activation, neuroinflammation, and oxidative stress in FBN-ARO-KO mice. The compromised astrocyte activation in FBN-ARO-KO mice was associated with robust downregulation of the astrocyte-derived neurotrophic factors, BDNF and IGF-1, as well as the astrocytic glutamate transporter, GLT-1. Νeuronal FGF2, which acts in a paracrine manner to suppress astrocyte activation, was increased in FBN-ARO-KO neurons. Interestingly, blocking FGF2 signaling by central injection of FGFR3-neutralizing antibody was able to reverse the diminishment in neuroprotective astrocyte reactivity, and attenuate neuronal damage in FBN-ARO-KO mice. Moreover, in vivo E2 replacement suppressed FGF2 signaling and rescued the compromised reactive astrogliosis and cognitive deficits. Collectively, our data provide novel genetic evidence for a beneficial role of neuron-derived E2 in astrocyte activation, neuroprotection, and cognitive preservation following ischemic injury to the brain.SIGNIFICANCE STATEMENT Following cerebral ischemia, astrocytes become highly reactive and can exert neuroprotection through the release of neurotrophic factors and clearance of neurotoxic glutamate. The current study advances our understanding of this process by demonstrating that neuron-derived 17ß-estradiol (E2) is neuroprotective and critical for induction of reactive astrocytes and their ability to produce astrocyte-derived neurotrophic factors, BDNF and IGF-1, and the glutamate transporter, GLT-1 after ischemic brain damage. These beneficial effects of neuron-derived E2 appear to be due, at least in part, to suppression of neuronal FGF2 signaling, which is a known suppressor of astrocyte activation. These findings suggest that neuron-derived E2 is neuroprotective after ischemic brain injury via a mechanism that involves suppression of neuronal FGF2 signaling, thereby facilitating astrocyte activation.


Assuntos
Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Estrogênios/metabolismo , Gliose/metabolismo , Neurônios/metabolismo , Comunicação Parácrina , Animais , Aromatase/genética , Aromatase/metabolismo , Isquemia Encefálica/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos , Estresse Oxidativo
6.
J Neurochem ; 158(3): 737-752, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34133773

RESUMO

Gangliosides, the major sialic-acid containing glycosphingolipids in the mammalian brain, play important roles in brain development and neural functions. Here, we show that the b-series ganglioside GD3 and its biosynthetic enzyme, GD3-synthase (GD3S), were up-regulated predominantly in the microglia of mouse hippocampus from 2 to 7 days following global cerebral ischemia (GCI). Interestingly, GD3S knockout (GD3S-KO) mice exhibited decreased hippocampal neuronal loss following GCI, as compared to wild-type (WT) mice. While comparable levels of astrogliosis and microglial proliferation were observed between WT and GD3S-KO mice, the phagocytic capacity of the GD3S-KO microglia was significantly compromised after GCI. At 2 and 4 days following GCI, the GD3S-KO microglia demonstrated decreased amoebic morphology, reduced neuronal material engulfment, and lower expression of the phagolysosome marker CD68, as compared to the WT microglia. Finally, by using a microglia-primary neuron co-culture model, we demonstrated that the GD3S-KO microglia isolated from mouse brains at 2 days after GCI are less neurotoxic to co-cultured hippocampal neurons than the WT-GCI microglia. Moreover, the percentage of microglia with engulfed neuronal elements in the co-cultured wells was also significantly decreased in the GD3S-KO mice after GCI. Interestingly, the impaired phagocytic capacity of GD3S-KO microglia could be partially restored by pre-treatment with exogenous ganglioside GD3. Altogether, this study provides functional evidence that ganglioside GD3 regulates phagocytosis by microglia in an ischemic stroke model. Our data also suggest that the GD3-linked microglial phagocytosis may contribute to the mechanism of delayed neuronal death following ischemic brain injury.


Assuntos
Isquemia Encefálica/metabolismo , Gangliosídeos/biossíntese , Microglia/metabolismo , Fagocitose/fisiologia , Regulação para Cima/fisiologia , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Técnicas de Cocultura , Gangliosídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia
7.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34948039

RESUMO

In addition to being a steroid hormone, 17ß-estradiol (E2) is also a neurosteroid produced in neurons in various regions of the brain of many species, including humans. Neuron-derived E2 (NDE2) is synthesized from androgen precursors via the action of the biosynthetic enzyme aromatase, which is located at synapses and in presynaptic terminals in neurons in both the male and female brain. In this review, we discuss evidence supporting a key role for NDE2 as a neuromodulator that regulates synaptic plasticity and memory. Evidence supporting an important neuromodulatory role of NDE2 in the brain has come from studies using aromatase inhibitors, aromatase overexpression in neurons, global aromatase knockout mice, and the recent development of conditional forebrain neuron-specific knockout mice. Collectively, these studies demonstrate a key role of NDE2 in the regulation of synapse and spine density, efficacy of excitatory synaptic transmission and long-term potentiation, and regulation of hippocampal-dependent recognition memory, spatial reference memory, and contextual fear memory. NDE2 is suggested to achieve these effects through estrogen receptor-mediated regulation of rapid kinase signaling and CREB-BDNF signaling pathways, which regulate actin remodeling, as well as transcription, translation, and transport of synaptic proteins critical for synaptic plasticity and function.


Assuntos
Estradiol/metabolismo , Neurônios/metabolismo , Memória Espacial/fisiologia , Sinapses/fisiologia , Animais , Aromatase/genética , Aromatase/metabolismo , Feminino , Humanos , Masculino , Plasticidade Neuronal , Transdução de Sinais
8.
J Neurosci ; 39(15): 2792-2809, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30728170

RESUMO

17ß-estradiol (E2) is produced from androgens via the action of the enzyme aromatase. E2 is known to be made in neurons in the brain, but its precise functions in the brain are unclear. Here, we used a forebrain-neuron-specific aromatase knock-out (FBN-ARO-KO) mouse model to deplete neuron-derived E2 in the forebrain of mice and thereby elucidate its functions. FBN-ARO-KO mice showed a 70-80% decrease in aromatase and forebrain E2 levels compared with FLOX controls. Male and female FBN-ARO-KO mice exhibited significant deficits in forebrain spine and synaptic density, as well as hippocampal-dependent spatial reference memory, recognition memory, and contextual fear memory, but had normal locomotor function and anxiety levels. Reinstating forebrain E2 levels via exogenous in vivo E2 administration was able to rescue both the molecular and behavioral defects in FBN-ARO-KO mice. Furthermore, in vitro studies using FBN-ARO-KO hippocampal slices revealed that, whereas induction of long-term potentiation (LTP) was normal, the amplitude was significantly decreased. Intriguingly, the LTP defect could be fully rescued by acute E2 treatment in vitro Mechanistic studies revealed that FBN-ARO-KO mice had compromised rapid kinase (AKT, ERK) and CREB-BDNF signaling in the hippocampus and cerebral cortex. In addition, acute E2 rescue of LTP in hippocampal FBN-ARO-KO slices could be blocked by administration of a MEK/ERK inhibitor, further suggesting a key role for rapid ERK signaling in neuronal E2 effects. In conclusion, the findings provide evidence of a critical role for neuron-derived E2 in regulating synaptic plasticity and cognitive function in the male and female brain.SIGNIFICANCE STATEMENT The steroid hormone 17ß-estradiol (E2) is well known to be produced in the ovaries in females. Intriguingly, forebrain neurons also express aromatase, the E2 biosynthetic enzyme, but the precise functions of neuron-derived E2 is unclear. Using a novel forebrain-neuron-specific aromatase knock-out mouse model to deplete neuron-derived E2, the current study provides direct genetic evidence of a critical role for neuron-derived E2 in the regulation of rapid AKT-ERK and CREB-BDNF signaling in the mouse forebrain and demonstrates that neuron-derived E2 is essential for normal expression of LTP, synaptic plasticity, and cognitive function in both the male and female brain. These findings suggest that neuron-derived E2 functions as a novel neuromodulator in the forebrain to control synaptic plasticity and cognitive function.


Assuntos
Estradiol/fisiologia , Memória/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Ansiedade/genética , Ansiedade/psicologia , Aromatase/genética , Cognição , Espinhas Dendríticas , Estradiol/metabolismo , Estradiol/farmacologia , Feminino , Hipocampo , Potenciação de Longa Duração/genética , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prosencéfalo/enzimologia , Prosencéfalo/metabolismo , Desempenho Psicomotor/fisiologia , Aprendizagem Espacial
9.
J Neuroinflammation ; 17(1): 45, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32007102

RESUMO

BACKGROUND: G-protein-coupled estrogen receptor (GPER/GPR30) is a novel membrane-associated estrogen receptor that can induce rapid kinase signaling in various cells. Activation of GPER can prevent hippocampal neuronal cell death following transient global cerebral ischemia (GCI), although the mechanisms remain unclear. In the current study, we sought to address whether GPER activation exerts potent anti-inflammatory effects in the rat hippocampus after GCI as a potential mechanism to limit neuronal cell death. METHODS: GCI was induced by four-vessel occlusion in ovariectomized female SD rats. Specific agonist G1 or antagonist G36 of GPER was administrated using minipump, and antisense oligonucleotide (AS) of interleukin-1ß receptor antagonist (IL1RA) was administrated using brain infusion kit. Protein expression of IL1RA, NF-κB-P65, phosphorylation of CREB (p-CREB), Bcl2, cleaved caspase 3, and microglial markers Iba1, CD11b, as well as inflammasome components NLRP3, ASC, cleaved caspase 1, and Cle-IL1ß in the hippocampal CA1 region were investigated by immunofluorescent staining and Western blot analysis. The Duolink II in situ proximity ligation assay (PLA) was performed to detect the interaction between NLRP3 and ASC. Immunofluorescent staining for NeuN and TUNEL analysis were used to analyze neuronal survival and apoptosis, respectively. We performed Barnes maze and Novel object tests to compare the cognitive function of the rats. RESULTS: The results showed that G1 attenuated GCI-induced elevation of Iba1 and CD11b in the hippocampal CA1 region at 14 days of reperfusion, and this effect was blocked by G36. G1 treatment also markedly decreased expression of the NLRP3-ASC-caspase 1 inflammasome and IL1ß activation, as well as downstream NF-κB signaling, the effects reversed by G36 administration. Intriguingly, G1 caused a robust elevation in neurons of a well-known endogenous anti-inflammatory factor IL1RA, which was reversed by G36 treatment. G1 also enhanced p-CREB level in the hippocampus, a transcription factor known to enhance expression of IL1RA. Finally, in vivo IL1RA-AS abolished the anti-inflammatory, neuroprotective, and anti-apoptotic effects of G1 after GCI and reversed the cognitive-enhancing effects of G1 at 14 days after GCI. CONCLUSIONS: Taken together, the current results suggest that GPER preserves cognitive function following GCI in part by exerting anti-inflammatory effects and enhancing the defense mechanism of neurons by upregulating IL1RA.


Assuntos
Isquemia Encefálica/metabolismo , Hipocampo/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Apoptose , Isquemia Encefálica/psicologia , Região CA1 Hipocampal/metabolismo , Morte Celular , Sobrevivência Celular , Cognição , Feminino , Proteína Antagonista do Receptor de Interleucina 1/genética , Aprendizagem em Labirinto , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G/genética , Reconhecimento Psicológico , Fator de Transcrição RelA/metabolismo
10.
J Immunol ; 198(9): 3615-3626, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28341672

RESUMO

Traumatic brain injury (TBI) is a major public health issue, producing significant patient mortality and poor long-term outcomes. Increasing evidence suggests an important, yet poorly defined, role for the immune system in the development of secondary neurologic injury over the days and weeks following a TBI. In this study, we tested the hypothesis that peripheral macrophage infiltration initiates long-lasting adaptive immune responses after TBI. Using a murine controlled cortical impact model, we used adoptive transfer, transgenic, and bone marrow chimera approaches to show increased infiltration and proinflammatory (classically activated [M1]) polarization of macrophages for up to 3 wk post-TBI. Monocytes purified from the injured brain stimulated the proliferation of naive T lymphocytes, enhanced the polarization of T effector cells (TH1/TH17), and decreased the production of regulatory T cells in an MLR. Similarly, elevated T effector cell polarization within blood and brain tissue was attenuated by myeloid cell depletion after TBI. Functionally, C3H/HeJ (TLR4 mutant) mice reversed M1 macrophage and TH1/TH17 polarization after TBI compared with C3H/OuJ (wild-type) mice. Moreover, brain monocytes isolated from C3H/HeJ mice were less potent stimulators of T lymphocyte proliferation and TH1/TH17 polarization compared with C3H/OuJ monocytes. Taken together, our data implicate TLR4-dependent, M1 macrophage trafficking/polarization into the CNS as a key mechanistic link between acute TBI and long-term, adaptive immune responses.


Assuntos
Lesões Encefálicas Traumáticas/imunologia , Macrófagos/fisiologia , Células Th1/imunologia , Células Th17/imunologia , Receptor 4 Toll-Like/genética , Imunidade Adaptativa , Transferência Adotiva , Animais , Diferenciação Celular/genética , Movimento Celular/genética , Proliferação de Células/genética , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação/genética , Fenótipo
11.
Proc Natl Acad Sci U S A ; 112(48): E6673-82, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627258

RESUMO

17-ß estradiol (E2) has been implicated as neuroprotective in a variety of neurodegenerative disorders. However, the underlying mechanism remains unknown. Here, we provide genetic evidence, using forebrain-specific knockout (FBKO) mice, that proline-, glutamic acid-, and leucine-rich protein 1 (PELP1), an estrogen receptor coregulator protein, is essential for the extranuclear signaling and neuroprotective actions of E2 in the hippocampal CA1 region after global cerebral ischemia (GCI). E2-mediated extranuclear signaling (including activation of extracellular signal-regulated kinase and Akt) and antiapoptotic effects [such as attenuation of JNK signaling and increase in phosphorylation of glycogen synthase kinase-3ß (GSK3ß)] after GCI were compromised in PELP1 FBKO mice. Mechanistic studies revealed that PELP1 interacts with GSK3ß, E2 modulates interaction of PELP1 with GSK3ß, and PELP1 is a novel substrate for GSK3ß. RNA-seq analysis of control and PELP1 FBKO mice after ischemia demonstrated alterations in several genes related to inflammation, metabolism, and survival in PELP1 FBKO mice, as well as a significant reduction in the activation of the Wnt/ß-catenin signaling pathway. In addition, PELP1 FBKO studies revealed that PELP1 is required for E2-mediated neuroprotection and for E2-mediated preservation of cognitive function after GCI. Collectively, our data provide the first direct in vivo evidence, to our knowledge, of an essential role for PELP1 in E2-mediated rapid extranuclear signaling, neuroprotection, and cognitive function in the brain.


Assuntos
Região CA1 Hipocampal/metabolismo , Estrogênios/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroproteção/genética , Animais , Isquemia Encefálica/patologia , Região CA1 Hipocampal/patologia , Proteína Tirosina Quinase CSK , Cognição , Receptor alfa de Estrogênio/metabolismo , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Inflamação , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oligonucleotídeos Antissenso , Fosforilação , Transdução de Sinais , Quinases da Família src/metabolismo
12.
Respir Res ; 18(1): 38, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28222740

RESUMO

BACKGROUND: Myofibroblasts play a major role in the synthesis of extracellular matrix (ECM) and the stimulation of these cells is thought to play an important role in the development of silicosis. The present study was undertaken to investigate the anti-fibrotic effects of dibutyryl-cAMP (db-cAMP) on rats induced by silica. METHODS: A HOPE MED 8050 exposure control apparatus was used to create the silicosis model. Rats were randomly divided into 4 groups: 1)controls for 16 w; 2)silicosis for 16 w; 3)db-cAMP pre-treatment; 4) db-cAMP post-treatment. Rat pulmonary fibroblasts were cultured in vitro and divided into 4 groups as follows: 1) controls; 2) 10-7mol/L angiotensin II (Ang II); 3) Ang II +10-4 mol/L db-cAMP; and 4) Ang II + db-cAMP+ 10-6 mol/L H89. Hematoxylin-eosin (HE), Van Gieson staining and immunohistochemistry (IHC) were performed to observe the histomorphology of lung tissue. The levels of cAMP were detected by enzyme immunoassay. Double-labeling for α-SMA with Gαi3, protein kinase A (PKA), phosphorylated cAMP-response element-binding protein (p-CREB), and p-Smad2/3 was identified by immunofluorescence staining. Protein levels were detected by Western blot analysis. The interaction between CREB-binding protein (CBP) and Smad2/3 and p-CREB were measured by co-immunoprecipitation (Co-IP). RESULTS: Db-cAMP treatment reduced the number and size of silicosis nodules, inhibited myofibroblast differentiation, and extracellular matrix deposition in vitro and in vivo. In addition, db-cAMP regulated Gαs protein and inhibited expression of Gαi protein, which increased endogenous cAMP. Db-cAMP increased phosphorylated cAMP-response element-binding protein (p-CREB) via protein kinase A (PKA) signaling, and decreased nuclear p-Smad2/3 binding with CREB binding protein (CBP), which reduced activation of p-Smads in fibroblasts induced by Ang II. CONCLUSIONS: This study showed an anti-silicotic effect of db-cAMP that was mediated via PKA/p-CREB/CBP signaling. Furthermore, the findings offer novel insight into the potential use of cAMP signaling for therapeutic strategies to treat silicosis.


Assuntos
Asbestose/tratamento farmacológico , Asbestose/metabolismo , Proteína de Ligação a CREB/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , CMP Cíclico/análogos & derivados , Proteínas de Membrana/metabolismo , Miofibroblastos/efeitos dos fármacos , Fosfoproteínas/metabolismo , Animais , Asbestose/patologia , Diferenciação Celular/efeitos dos fármacos , CMP Cíclico/administração & dosagem , Masculino , Miofibroblastos/patologia , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
13.
J Neurosci ; 35(44): 14727-39, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26538645

RESUMO

The current study examined efficacy of a small Tat (trans-activator of transcription)-conjugated peptide activator of the Nrf2 (nuclear factor-E2-related factor-2) antioxidant/cell-defense pathway as a potential injury-specific, novel neuroprotectant against global cerebral ischemia (GCI). A competitive peptide, DEETGE-CAL-Tat, was designed to facilitate Nrf2 activation by disrupting interaction of Nrf2 with Keap1 (kelch-like ECH-associated protein 1), a protein that sequesters Nrf2 in the cytoplasm and thereby inactivates it. The DEETGE-CAL-Tat peptide contained the critical sequence DEETGE for the Nrf2-Keap1 interaction, the cell transduction domain of the HIV-Tat protein, and the cleavage sequence of calpain, which is sensitive to Ca(2+) increase and allows injury-specific activation of Nrf2. Using an animal model of GCI, we demonstrated that pretreatment with the DEETGE-CAL-Tat peptide markedly decreased Nrf2 interaction with Keap1 in the rat hippocampal CA1 region after GCI, and enhanced Nrf2 nuclear translocation and DNA binding. The DEETGE-CAL-Tat peptide also induced Nrf2 antioxidant/cytoprotective target genes, reduced oxidative stress, and induced strong neuroprotection and marked preservation of hippocampal-dependent cognitive function after GCI. These effects were specific as control peptides lacked neuroprotective ability. Intriguingly, the DEETGE-CAL-Tat peptide effects were also injury specific, as it had no effect upon neuronal survival or cognitive performance in sham nonischemic animals. Of significant interest, peripheral, postischemia administration of the DEETGE-CAL-Tat peptide from days 1-9 after GCI also induced robust neuroprotection and strongly preserved hippocampal-dependent cognitive function. Based on its robust neuroprotective and cognitive-preserving effects, and its unique injury-specific activation properties, the DEETGE-CAL-Tat peptide represents a novel, and potentially promising new therapeutic modality for the treatment of GCI. SIGNIFICANCE STATEMENT: The current study demonstrates that DEETGE-CAL-Tat, a novel peptide activator of a key antioxidant gene transcription pathway in the hippocampus after global cerebral ischemia, can exert robust neuroprotection and preservation of cognitive function. A unique feature of the peptide is that its beneficial effects are injury specific. This feature is attractive as it targets drug activation specifically in the site of injury, and likely would lead to a reduction of undesirable side effects if translatable to the clinic. Due to its injury-specific activation, robust neuroprotection, and cognitive-preserving effects, this novel peptide may represent a much-needed therapeutic advance that could have efficacy in the treatment of global cerebral ischemia.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Peptídeos Penetradores de Células/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Sequência de Aminoácidos , Animais , Peptídeos Penetradores de Células/administração & dosagem , Peptídeos Penetradores de Células/genética , Relação Dose-Resposta a Droga , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Proteína 1 Associada a ECH Semelhante a Kelch , Masculino , Dados de Sequência Molecular , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Ratos , Ratos Sprague-Dawley
14.
Toxicol Appl Pharmacol ; 294: 1-10, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26785300

RESUMO

The epithelial-mesenchymal transition (EMT) is a critical stage during the development of silicosis fibrosis. In the current study, we hypothesized that the anti-fibrotic tetrapeptide, N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) may exert its anti-fibrotic effects via activation of the TGF-ß1/ROCK1 pathway, leading to inhibition of EMT. To address this hypothesis, we first examined the effect of Ac-SDKP upon EMT using an in vivo rat silicosis model, as well as in an in vitro model of TGF-ß1-induced EMT. Confocal laser scanning microscopy was used to examine colocalization of surfactant protein A (SP-A), fibroblast specific protein-1 (FSP-1) and α-smooth muscle actin (α-SMA) in vivo. Western blot analysis was used to examine for changes in the protein levels of E-cadherin (E-cad) and SP-A (epithelial cell markers), vimentin (mesenchymal cell marker), α-SMA (active myofibroblast marker), and collagen I and III in both in vivo and in vitro experiments. Secondly, we utilized Western blot analysis and confocal laser scanning microscopy to examine the protein expression of TGF-ß1 and ROCK1 in in vivo and in vitro studies. The results revealed that Ac-SDKP treatment prevented increases in the expression of mesenchymal markers as well as TGF-ß1, ROCK1, collagen I and III. Furthermore, Ac-SDKP treatment prevented decreases in the expression of epithelial cell markers in both in vivo and in vitro experiments. Based on the results, we conclude that Ac-SDKP inhibits the transition of epithelial cell-myofibroblast in silicosis via activation of the TGF-ß1/ROCK1 signaling pathway, which may serve as a novel mechanism by which it exerts its anti-fibrosis properties.


Assuntos
Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Oligopeptídeos/farmacologia , Substâncias Protetoras/farmacologia , Alvéolos Pulmonares/efeitos dos fármacos , Silicose/patologia , Actinas/metabolismo , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular , Humanos , Masculino , Alvéolos Pulmonares/citologia , Proteína A Associada a Surfactante Pulmonar/metabolismo , Ratos , Ratos Wistar , Mucosa Respiratória/citologia , Mucosa Respiratória/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Quinases Associadas a rho/metabolismo
15.
Hippocampus ; 25(3): 286-96, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25271147

RESUMO

Ischemic postconditioning (Post C), which involves administration of a brief ischemia after the initial ischemic event, has been demonstrated to be strongly neuroprotective against global cerebral ischemia (GCI) and to improve cognitive outcome. To enhance understanding of the underlying mechanisms, the current study examined the role of NMDA receptors in mediating the beneficial effects of Post C (3 min ischemia) administered 2 days after GCI in adult male rats. The results revealed that Post C was strongly neuroprotective against GCI, and that this effect was blocked by administration of the NMDA receptor antagonist MK-801. Further work revealed that the NR2A-type NMDA receptors mediate the Post C beneficial effects as administration of a NR2A-preferring antagonist (NVP-A) blocked Post C neuroprotection and cognitive enhancement, while administration of a NR2B-preferring antagonist (Ro25) was without effect. Post C significantly up-regulated NR2A levels and phosphorylation of NR2A in the hippocampal CA1 region after Post C. Post C also increased Ca(2+) influx and activation/phosphorylation of CamKIIα at Thr(286), effects that were NR2A mediated as they were blocked by NVP-A. Phosphorylation of ERK and CREB was also increased by Post C, as were two downstream CREB-dependent prosurvival factors, brain derived neurotropic factor (BDNF) and Bcl2, effects that were blocked by the NR2A antagonist, NVP-A. Taken as a whole, the current study provides evidence that NR2A-activation and downstream prosurvival signaling is a critical mediator of Post C-induced neuroprotection and cognitive enhancement following GCI.


Assuntos
Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais/fisiologia , Análise de Variância , Animais , Isquemia Encefálica/complicações , Isquemia Encefálica/terapia , Proteína de Ligação a CREB/metabolismo , Cálcio/metabolismo , Maleato de Dizocilpina/uso terapêutico , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Imunoprecipitação , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Fenóis/uso terapêutico , Piperidinas/uso terapêutico , Quinoxalinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
16.
Brain ; 136(Pt 5): 1432-45, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23474850

RESUMO

Females who enter menopause prematurely via bilateral ovariectomy (surgical menopause) have a significantly increased risk for cognitive decline and dementia. To help elucidate the mechanisms underlying this phenomenon, we used an animal model of surgical menopause, long-term (10-week) bilateral ovariectomy in female rats. Herein, we demonstrate that long-term oestrogen deprivation dramatically increases sensitivity of the normally resistant hippocampal CA3 region to ischaemic stress, an effect that was gender-specific, as it was not observed in long-term orchiectomized males. Furthermore, the enhanced damage to the CA3 region correlated with a worse cognitive outcome after ischaemic stress. Long-term ovariectomized rats also displayed a robust hyperinduction of Alzheimer's disease-related proteins in the CA3 region and a switch in amyloid precursor protein processing from non-amyloidogenic to amyloidogenic following ischaemic stress CA3 hypersensitivity also extended to an Alzheimer's disease-relevant insult, as the CA3 region of long-term ovariectomized rats was profoundly hypersensitive to the neurotoxic effects of amyloid-ß1-42, the most amyloidogenic form of the amyloid-ß peptide. Additional studies revealed that CA3 region hypersensitivity, Alzheimer's disease-related protein induction, and amyloidogenesis are mediated by a NADPH oxidase/superoxide/c-Jun N-terminal kinase/c-Jun signalling pathway, involving both transcriptional and post-translational mechanisms. In addition, while 17ß-oestradiol replacement at the end of the long-term oestrogen deprivation period could not prevent CA3 hypersensitivity and amyloidogenesis, if 17ß-oestradiol was initiated at the time of ovariectomy and maintained throughout the 10-week oestrogen deprivation period, it completely prevented these events, providing support for the 'critical window' hypothesis for oestrogen replacement therapy benefit. Collectively, these findings may help explain the increased risk of cognitive decline and dementia observed in women following surgical menopause, and they provide increased support that early 17ß-oestradiol replacement is critical in preventing the negative neural effects associated with bilateral ovariectomy.


Assuntos
Peptídeos beta-Amiloides/biossíntese , Peptídeos beta-Amiloides/toxicidade , Região CA3 Hipocampal/metabolismo , Menopausa/metabolismo , Degeneração Neural/metabolismo , Ovariectomia , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/toxicidade , Estresse Fisiológico/fisiologia , Peptídeos beta-Amiloides/metabolismo , Animais , Região CA3 Hipocampal/patologia , Feminino , Masculino , Modelos Animais , Degeneração Neural/patologia , Ovariectomia/efeitos adversos , Fragmentos de Peptídeos/metabolismo , Ratos , Ratos Sprague-Dawley
17.
Proc Natl Acad Sci U S A ; 108(35): E617-24, 2011 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-21808025

RESUMO

Recent work suggests that timing of 17ß-estradiol (E2) therapy may be critical for observing a beneficial neural effect. Along these lines, E2 neuroprotection, but not its uterotropic effect, was shown to be lost following long-term E2 deprivation (LTED), and this effect was associated with a significant decrease of estrogen receptor-α (ERα) in the hippocampus but not the uterus. The purpose of the current study was to determine the mechanism underlying the ERα decrease and to determine whether aging leads to a similar loss of hippocampal ERα and E2 sensitivity. The results of the study show that ERα in the rat hippocampal CA1 region but not the uterus undergoes enhanced interaction with the E3 ubiquitin ligase C terminus of heat shock cognate protein 70 (Hsc70)-interacting protein (CHIP) that leads to its ubiquitination/proteasomal degradation following LTED (10-wk ovariectomy). E2 treatment initiated before but not after LTED prevented the enhanced ERα-CHIP interaction and ERα ubiquitination/degradation and was fully neuroprotective against global cerebral ischemia. Administration of a proteasomal inhibitor or CHIP antisense oligonucleotides to knock down CHIP reversed the LTED-induced down-regulation of ERα. Further work showed that these observations extended to natural aging, because aged rats showed enhanced CHIP interaction; ubiquitination and degradation of both hippocampal ERα and ERß; and, importantly, a correlated loss of E2 neuroprotection against global cerebral ischemia. In contrast, E2 administration to middle-aged rats was still capable of exerting neuroprotection. As a whole, the study provides support for a "critical period" for E2 neuroprotection of the hippocampus and provides important insight into the mechanism underlying the critical period.


Assuntos
Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Hipocampo/metabolismo , Fármacos Neuroprotetores/farmacologia , Ubiquitina-Proteína Ligases/fisiologia , Envelhecimento/metabolismo , Animais , Feminino , Complexo de Endopeptidases do Proteassoma/fisiologia , Inibidores de Proteassoma , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Ubiquitinação
18.
Hippocampus ; 23(7): 634-47, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23536494

RESUMO

Global cerebral ischemia, such as occurs following cardiac arrest, can lead to oxidative stress, hippocampal neuronal cell death, and cognitive defects. The current study examined the potential beneficial effect and underlying mechanisms of post-treatment with the naturally occurring isoflavonic phytoestrogen, genistein, which has been implicated to attenuate oxidative stress. Genistein (1 mg kg(-1)) was administered i.v. 5 min after reperfusion in rats subjected to four-vessel global cerebral ischemia (GCI). The results revealed that genistein exerted significant neuroprotection of hippocampal CA1 neurons following GCI, as evidenced by an increase in NeuN-positive neurons and the decrease in TUNEL-positive neurons. Furthermore, genistein treatment also resulted in significantly improved spatial learning and memory as compared to vehicle control animals. The beneficial effects of genistein appear to be mediated by an increase of phosphorylation/activation of eNOS, with subsequent activation of the antioxidant/detoxification Nrf2/Keap1 transcription system. Along these lines, genistein increased keap1 S-nitrosylation, with a corresponding nuclear accumulation and enhanced DNA binding activity of Nrf2. Genistein also enhanced levels of the Nrf2 downstream antioxidant protein, heme oxygenase (HO)-1, as compared to vehicle control groups. In accordance with its induction of Nrf2 activation, genistein exerted a robust attenuation of oxidative DNA damage and lipid peroxidative damage in hippocampal CA1 neurons after GCI, as measured by immunofluorescence staining of the oxidative stress markers, 8-hydroxy-2-deoxyguanosine (8-OHdG) and 4-Hydroxynonenal (4-HNE). Interestingly, the aforementioned effects of genistein were abolished by pretreatment with L-NAME, an inhibitor of eNOS activation. In conclusion, the results of the study demonstrate that low dose genistein can exert significant antioxidant, neuroprotective, and cognitive-enhancing effects in the hippocampal CA1 region following GCI. Mechanistically, the beneficial effects of genistein appear to be mediated by enhanced eNOS phosphorylation/activation and nitric oxide (NO)-mediated thiol modification of Keap1, with subsequent upregulation of the Nrf2/HO-1 antioxidative signaling pathway and a resultant attenuation of oxidative stress.


Assuntos
Isquemia Encefálica/metabolismo , Genisteína/farmacologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Western Blotting , Isquemia Encefálica/patologia , Imunofluorescência , Heme Oxigenase-1/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fitoestrógenos/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
19.
Front Neuroendocrinol ; 33(1): 85-104, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22079780

RESUMO

17ß-Estradiol (estradiol or E2) is implicated as a neuroprotective factor in a variety of neurodegenerative disorders. This review focuses on the mechanisms underlying E2 neuroprotection in cerebral ischemia, as well as emerging evidence from basic science and clinical studies, which suggests that there is a "critical period" for estradiol's beneficial effect in the brain. Potential mechanisms underlying the critical period are discussed, as are the neurological consequences of long-term E2 deprivation (LTED) in animals and in humans after natural menopause or surgical menopause. We also summarize the major clinical trials concerning postmenopausal hormone therapy (HT), comparing their outcomes with respect to cardiovascular and neurological disease and discussing their relevance to the critical period hypothesis. Finally, potential caveats, controversies and future directions for the field are highlighted and discussed throughout the review.


Assuntos
Isquemia Encefálica/prevenção & controle , Estradiol/uso terapêutico , Doenças Neurodegenerativas/prevenção & controle , Fármacos Neuroprotetores/uso terapêutico , Animais , Período Crítico Psicológico , Receptor alfa de Estrogênio/fisiologia , Terapia de Reposição de Estrogênios , Feminino , Humanos , Menopausa , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Receptores de Estrogênio , Receptores Acoplados a Proteínas G/fisiologia
20.
Am J Physiol Regul Integr Comp Physiol ; 304(11): R1001-8, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23576615

RESUMO

Obesity is a risk factor for stroke, but the early effects of high-fat diet (HFD) on neurovascular function and ischemic stroke outcomes remain unclear. The goal of this study was to test the hypotheses that HFD beginning early in life 1) impairs neurovascular coupling, 2) causes cerebrovascular dysfunction, and 3) worsens short-term outcomes after cerebral ischemia. Functional hyperemia and parenchymal arteriole (PA) reactivity were measured in rats after 8 wk of HFD. The effect of HFD on basilar artery function after middle cerebral artery occlusion (MCAO) and associated O-GlcNAcylation were assessed. Neuronal cell death, infarct size, hemorrhagic transformation (HT) frequency/severity, and neurological deficit were evaluated after global ischemia and transient MCAO. HFD caused a 10% increase in body weight and doubled adiposity without a change in lipid profile, blood glucose, and blood pressure. Functional hyperemia and PA relaxation were decreased with HFD. Basilar arteries from stroked HFD rats were more sensitive to contractile factors, and acetylcholine-mediated relaxation was impaired. Vascular O-GlcNAcylated protein content was increased with HFD. This group also showed greater mortality rate, infarct volume, HT occurrence rate, and HT severity and poor functional outcome compared with the control diet group. These results indicate that HFD negatively affects neurovascular coupling and cerebrovascular function even in the absence of dyslipidemia. These early cerebrovascular changes may be the cause of greater cerebral injury and poor outcomes of stroke in these animals.


Assuntos
Isquemia Encefálica/etiologia , Isquemia Encefálica/fisiopatologia , Circulação Cerebrovascular/fisiologia , Dieta Hiperlipídica/efeitos adversos , Animais , Arteríolas/fisiologia , Artéria Basilar/patologia , Encéfalo/patologia , Hemorragia Cerebral/fisiopatologia , Transtornos Cerebrovasculares/fisiopatologia , Colesterol/sangue , Hiperemia/fisiopatologia , Marcação In Situ das Extremidades Cortadas , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Insulina/sangue , Masculino , Microscopia de Vídeo , Contração Muscular/fisiologia , N-Acetilglucosaminiltransferases/metabolismo , Obesidade/fisiopatologia , Ratos , Ratos Wistar , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA