Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(51): 25991-26000, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31796595

RESUMO

Mutations in Cu/Zn superoxide dismutase (Sod1) have been reported in both familial and sporadic amyotrophic lateral sclerosis (ALS). In this study, we investigated the behavior of heteromeric combinations of wild-type (WT) and mutant Sod1 proteins A4V, L38V, G93A, and G93C in human cells. We showed that both WT and mutant Sod1 formed dimers and oligomers, but only mutant Sod1 accumulated in intracellular inclusions. Coexpression of WT and hSod1 mutants resulted in the formation of a larger number of intracellular inclusions per cell than that observed in cells coexpressing WT or mutant hSod1. The number of inclusions was greater in cells expressing A4V hSod1. To eliminate the contribution of endogenous Sod1, and better evaluate the effect of ALS-associated mutant Sod1 expression, we expressed human Sod1 WT and mutants in human cells knocked down for endogenous Sod1 (Sod1-KD), and in sod1Δ yeast cells. Using Sod1-KD cells we found that the WT-A4V heteromers formed higher molecular weight species compared with A4V and WT homomers. Using the yeast model, in conditions of chronological aging, we concluded that cells expressing Sod1 heterodimers showed decreased antioxidant activity, increased oxidative damage, reduced longevity, and oxidative stress-induced mutant Sod1 aggregation. In addition, we also found that ALS-associated Sod1 mutations reduced nuclear localization and, consequently, impaired the antioxidant response, suggesting this change in localization may contribute to disease in familial ALS. Overall, our study provides insight into the molecular underpinnings of ALS and may open avenues for the design of future therapeutic strategies.


Assuntos
Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Envelhecimento , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Corpos de Inclusão/metabolismo , Peso Molecular , Proteínas Mutantes/química , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutase-1/química
2.
Fungal Biol ; 122(6): 514-525, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29801796

RESUMO

The yeast Saccharomyces cerevisiae has played a vital role in the understanding of the molecular basis of aging and the relationship of aging process with oxidative stress (non-homeostatic accumulation of Reactive Oxygen Species, ROS). The mammalian and yeast antioxidant responses are similar and over 25 % of human-degenerative disease related genes have close homologues in yeast. The reduced genetic redundancy of yeast facilitates visualization of the effect of a deleted or mutated gene. By manipulating growth conditions, yeast cells can survive only fermenting (low ROS levels) or respiring (increased ROS levels), which facilitates the elucidation of the mechanisms involved with acquisition of tolerance to oxidative stress. Furthermore, the yeast databases are the most complete of all eukaryotic models. In this work, we highlight the value of S. cerevisiae as a model to investigate the oxidative stress response and its potential impact on aging and age-related diseases.


Assuntos
Envelhecimento/fisiologia , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Fermentação , Humanos , Doenças Neurodegenerativas/metabolismo , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA