Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Genetica ; 152(1): 43-49, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38349466

RESUMO

Satellite DNAs (satDNAs) are highly repetitive sequences that occur in virtually all eukaryotic genomes and can undergo rapid copy number and nucleotide sequence variation among relatives. After chromosomal mapping of the satDNA JcSAT1, it was found a large accumulation at subtelomeres of Jatropha curcas (subgenus Curcas), but an absence of these monomers in J. integerrima (subgenus Jatropha). This fact suggests a dynamic scenario for this satellite repeat in Jatropha genomes. Here, we used a multitasking approach (sequence analysis, DNA blotting and chromosomal mapping) to investigate the molecular organization and chromosomal abundance and distribution of JcSAT1 in a broader group of species from the subgenus Jatropha (J. gossypiifolia, J. mollissima, J. podagrica, and J. multifida) in addition to J. curcas, with the aiming of understanding the evolution of this satDNA. Based on the analysis of BAC clone sequences of J. curcas, a large array (~ 30 kb) of 80 homogeneous monomers of JcSAT1 was identified in BAC 23J11. The monomer size was conserved (~ 358 bp) and contained a telomeric motif at the 5' end. PCR amplification coupled with a Southern blot revealed the presence of JcSAT1-like sequences in all species examined. However, a large set of genome copies was identified only in J. curcas, where a ladder-like pattern with multimers of different sizes was observed. In situ hybridization of BAC 23J11 confirmed the subtelomeric pattern for J. curcas, but showed no signals on chromosomes of species from the subgenus Jatropha. Our data indicate that JcSAT1 is a highly homogeneous satDNA that originated from a region near the telomeres and spread throughout the chromosomal subtermini, possibly due to frequent ectopic recombination between these regions. The abundance of JcSAT1 in the genome of J. curcas suggests that an amplification event occurred either at the base of the subgenus Curcas or at least in this species, although the repeat is shared by all species of the genus studied so far.


Assuntos
Euphorbiaceae , Jatropha , Jatropha/genética , Euphorbiaceae/genética , DNA Satélite/genética , Filogenia , Heterocromatina , Telômero/genética
2.
Theor Appl Genet ; 137(1): 29, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261028

RESUMO

KEY MESSAGE: Inversions and translocations are the major chromosomal rearrangements involved in Vigna subgenera evolution, being Vigna vexillata the most divergent species. Centromeric repositioning seems to be frequent within the genus. Oligonucleotide-based fluorescence in situ hybridization (Oligo-FISH) provides a powerful chromosome identification system for inferring plant chromosomal evolution. Aiming to understand macrosynteny, chromosomal diversity, and the evolution of bean species from five Vigna subgenera, we constructed cytogenetic maps for eight taxa using oligo-FISH-based chromosome identification. We used oligopainting probes from chromosomes 2 and 3 of Phaseolus vulgaris L. and two barcode probes designed from V. unguiculata (L.) Walp. genome. Additionally, we analyzed genomic blocks among the Ancestral Phaseoleae Karyotype (APK), two V. unguiculata subspecies (V. subg. Vigna), and V. angularis (Willd.) Ohwi & Ohashi (V. subg. Ceratotropis). We observed macrosynteny for chromosomes 2, 3, 4, 6, 7, 8, 9, and 10 in all investigated taxa except for V. vexillata (L.) A. Rich (V. subg. Plectrotropis), in which only chromosomes 4, 7, and 9 were unambiguously identified. Collinearity breaks involved with chromosomes 2 and 3 were revealed. We identified minor differences in the painting pattern among the subgenera, in addition to multiple intra- and interblock inversions and intrachromosomal translocations. Other rearrangements included a pericentric inversion in chromosome 4 (V. subg. Vigna), a reciprocal translocation between chromosomes 1 and 5 (V. subg. Ceratotropis), a potential deletion in chromosome 11 of V. radiata (L.) Wilczek, as well as multiple intrablock inversions and centromere repositioning via genomic blocks. Our study allowed the visualization of karyotypic patterns in each subgenus, revealing important information for understanding intrageneric karyotypic evolution, and suggesting V. vexillata as the most karyotypically divergent species.


Assuntos
Phaseolus , Vigna , Vigna/genética , Hibridização in Situ Fluorescente , Translocação Genética , Rearranjo Gênico , Phaseolus/genética
3.
Chromosome Res ; 30(4): 477-492, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35715657

RESUMO

The tribe Phaseoleae includes several legume crops with assembled genomes. Comparative genomic studies have evidenced the preservation of large genomic blocks among legumes, although chromosome dynamics during Phaseoleae evolution has not been investigated. We conducted a comparative genomic analysis to define an informative genomic block (GB) system and to reconstruct the ancestral Phaseoleae karyotype (APK). We identified GBs based on the orthologous genes between Phaseolus vulgaris and Vigna unguiculata and searched for GBs in different genomes of the Phaseolinae (P. lunatus) and Glycininae (Amphicarpaea edgeworthii) subtribes and Spatholobus suberectus (sister to Phaseolinae and Glycininae), using Medicago truncatula as the outgroup. We also used oligo-FISH probes of two P. vulgaris chromosomes to paint the orthologous chromosomes of two non-sequenced Phaseolinae species. We inferred the APK as having n = 11 and 19 GBs (A to S), hypothesizing five chromosome fusions that reduced the ancestral legume karyotype to n = 11. We identified the rearrangements among the APK and the subtribes and species, with extensive centromere repositioning in Phaseolus. We also reconstructed the chromosome number reduction in S. suberectus. The development of the GB system and the proposed APK provide useful approaches for future comparative genomic analyses of legume species.


Assuntos
Genoma , Phaseolus , Centrômero/genética , Cariótipo , Phaseolus/genética , Cariotipagem , Genoma de Planta , Evolução Molecular
4.
Drug Chem Toxicol ; 46(1): 104-112, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34906022

RESUMO

Amburana cearensis leaves have been used in folk medicine to treat respiratory diseases and inflammations. This study aimed to evaluate the biological potential of A. cearensis leaves by antioxidant and in vitro cytogenotoxic analyses of ethanolic crude extract (EE) and its fractions in healthy human cells. The EE was obtained by percolation, followed by fractionation using dichloromethane, cyclohexane, ethyl acetate (EtOAc), and methanol (MeOH) as organic solvents. Extract and all fractions were evaluated for their antioxidant potential by DPPH and reducing power tests. In vitro cytotoxic activity was determined in human peripheral blood mononuclear cells by MTT assay for the extract, EtOAc and MeOH fractions. In turn, the genotoxic activity was determined in human lymphocytes by the Cytokinesis Block Micronucleus assay only for the EtOAc fraction. Only EtOAc fraction was analyzed via gas chromatography coupled to mass spectrometry due to its higher biological activity. Considering the antioxidant potential, the EtOAc fraction was most effective in DPPH (EC50 43.37 µg/mL) and reducing power (EC50 89.80 µg/mL) assays. GC-MS analysis of the EtOAc fraction led to the identification of guaiacol, 2,3-dihydro-benzofuran, 2-methoxy-4-vinylphenol, isovanillic acid methyl ester, 4-hydroxybenzaldehyde, and 4-(ethoxymethyl)-phenol. The EE (400-1000 µg/mL), EtOAc (≤150 µg/mL) and MeOH (50 and 150-600 µg/mL) fractions were not cytotoxic by MTT test. Additionally, the EtOAc fraction (100-400 µg/mL) did not induce significant genotoxic damage. Concentrations of the EtOAc fraction with antioxidant activity showed no cytotoxicity, nor genotoxicity potential, indicating them as a nontoxic natural antioxidant source.


Assuntos
Antioxidantes , Fabaceae , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Leucócitos Mononucleares , Cromatografia Gasosa-Espectrometria de Massas
5.
Chromosoma ; 130(2-3): 133-147, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33909141

RESUMO

Cytogenomic resources have accelerated synteny and chromosome evolution studies in plant species, including legumes. Here, we established the first cytogenetic map of V. angularis (Va, subgenus Ceratotropis) and compared this new map with those of V. unguiculata (Vu, subgenus Vigna) and P. vulgaris (Pv) by BAC-FISH and oligopainting approaches. We mapped 19 Vu BACs and 35S rDNA probes to the 11 chromosome pairs of Va, Vu, and Pv. Vigna angularis shared a high degree of macrosynteny with Vu and Pv, with five conserved syntenic chromosomes. Additionally, we developed two oligo probes (Pv2 and Pv3) used to paint Vigna orthologous chromosomes. We confirmed two reciprocal translocations (chromosomes 2 and 3 and 1 and 8) that have occurred after the Vigna and Phaseolus divergence (~9.7 Mya). Besides, two inversions (2 and 4) and one translocation (1 and 5) have occurred after Vigna and Ceratotropis subgenera separation (~3.6 Mya). We also observed distinct oligopainting patterns for chromosomes 2 and 3 of Vigna species. Both Vigna species shared similar major rearrangements compared to Pv: one translocation (2 and 3) and one inversion (chromosome 3). The sequence synteny identified additional inversions and/or intrachromosomal translocations involving pericentromeric regions of both orthologous chromosomes. We propose chromosomes 2 and 3 as hotspots for chromosomal rearrangements and de novo centromere formation within and between Vigna and Phaseolus. Our BAC- and oligo-FISH mapping contributed to physically trace the chromosome evolution of Vigna and Phaseolus and its application in further studies of both genera.


Assuntos
Phaseolus , Vigna , Cromossomos de Plantas/genética , Phaseolus/genética , Sintenia , Translocação Genética , Vigna/genética
6.
Theor Appl Genet ; 134(11): 3675-3686, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34368889

RESUMO

KEY MESSAGE: An Oligo-FISH barcode system was developed for two model legumes, allowing the identification of all cowpea and common bean chromosomes in a single FISH experiment, and revealing new chromosome rearrangements. The FISH barcode system emerges as an effective tool to understand the chromosome evolution of economically important legumes and their related species. Current status on plant cytogenetic and cytogenomic research has allowed the selection and design of oligo-specific probes to individually identify each chromosome of the karyotype in a target species. Here, we developed the first chromosome identification system for legumes based on oligo-FISH barcode probes. We selected conserved genomic regions between Vigna unguiculata (Vu, cowpea) and Phaseolus vulgaris (Pv, common bean) (diverged ~ 9.7-15 Mya), using cowpea as a reference, to produce a unique barcode pattern for each species. We combined our oligo-FISH barcode pattern with a set of previously developed FISH probes based on BACs and ribosomal DNA sequences. In addition, we integrated our FISH maps with genome sequence data. Based on this integrated analysis, we confirmed two translocation events (involving chromosomes 1, 5, and 8; and chromosomes 2 and 3) between both species. The application of the oligo-based probes allowed us to demonstrate the participation of chromosome 5 in the translocation complex for the first time. Additionally, we detailed a pericentric inversion on chromosome 4 and identified a new paracentric inversion on chromosome 10. We also detected centromere repositioning associated with chromosomes 2, 3, 5, 7, and 9, confirming previous results for chromosomes 2 and 3. This first barcode system for legumes can be applied for karyotyping other Phaseolinae species, especially non-model, orphan crop species lacking genomic assemblies and cytogenetic maps, expanding our understanding of the chromosome evolution and genome organization of this economically important legume group.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Hibridização in Situ Fluorescente , Cariotipagem/métodos , Phaseolus/genética , Vigna/genética , Centrômero , Cromossomos de Plantas/genética , Sondas Moleculares
7.
Chromosome Res ; 28(2): 139-153, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31734754

RESUMO

Repetitive sequences are ubiquitous and fast-evolving elements responsible for size variation and large-scale organization of plant genomes. Within tribe Phaseoleae (Fabaceae), some genera, such as Phaseolus, Vigna, and Cajanus, show small genome and mostly stable chromosome number. Here, we applied a combined computational and cytological approach to study the organization and diversification of repetitive elements in some species of these genera. Sequences were classified in terms of type and repetitiveness and the most abundant were mapped to chromosomes. We identified long terminal repeat (LTR) retrotransposons, especially Ogre and Chromovirus elements, making up most of genomes, other than P. acutifolius and Vigna species. Satellite DNAs (SatDNAs) were less representative, but highly diverse among species, showing a clear phylogenetic relationship. In situ localization revealed preferential location at pericentromeres and centromeres for both types of sequences, suggesting a heterogeneous composition, especially for centromeres. Few elements showed subterminal accumulation. Copy number variation among chromosomes within and among species was observed for all nine identified SatDNAs. Altogether, our data pointed two main elements (Ty3/Gypsy retrotransponsons and SatDNAs) to the diversification on the repetitive landscape in Phaseoleae, with a typical set of repeats in each species. The high turnover of these sequences, however, did not affect total genome size.


Assuntos
Variação Genética , Genoma de Planta , Genômica , Phaseolus/genética , Sequências Repetitivas de Ácido Nucleico , Cromossomos de Plantas , Biologia Computacional/métodos , DNA de Plantas , Mineração de Dados , Heterogeneidade Genética , Genômica/métodos , Hibridização in Situ Fluorescente , Phaseolus/classificação , Filogenia , Retroelementos , Sequências de Repetição em Tandem
8.
Chromosome Res ; 28(3-4): 293-306, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32654079

RESUMO

Comparative cytogenetic mapping is a powerful approach to gain insights into genome organization of orphan crops, lacking a whole sequenced genome. To investigate the cytogenomic evolution of important Vigna and Phaseolus beans, we built a BAC-FISH (fluorescent in situ hybridization of bacterial artificial chromosome) map of Vigna aconitifolia (Vac, subgenus Ceratotropis), species with no sequenced genome, and compared with V. unguiculata (Vu, subgenus Vigna) and Phaseolus vulgaris (Pv) maps. Seventeen Pv BACs, eight Vu BACs, and 5S and 35S rDNA probes were hybridized in situ on the 11 Vac chromosome pairs. Five Vac chromosomes (Vac6, Vac7, Vac9, Vac10, and Vac11) showed conserved macrosynteny and collinearity between V. unguiculata and P. vulgaris. On the other hand, we observed collinearity breaks, identified by pericentric inversions involving Vac2 (Vu2), Vac4 (Vu4), and Vac3 (Pv3). We also detected macrosynteny breaks of translocation type involving chromosomes 1 and 8 of V. aconitifolia and P. vulgaris; 2 and 3 of V. aconitifolia and P. vulgaris; and 1 and 5 of V. aconitifolia and V. unguiculata. Considering our data and previous BAC-FISH studies, six chromosomes (1, 2, 3, 4, 5, and 8) are involved in major karyotype divergences between genera and five (1, 2, 3, 4, and 5) between Vigna subgenera, including mechanisms such as duplications, inversions, and translocations. Macrosynteny breaks between Vigna and Phaseolus suggest that the major chromosomal rearrangements have occurred within the Vigna clade. Our cytogenomic comparisons bring new light on the degree of shared macrosynteny and mechanisms of karyotype diversification during Vigna and Phaseolus evolution.


Assuntos
Citogenética , Genômica , Phaseolus/genética , Vigna/genética , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas , Citogenética/métodos , Genoma de Planta , Genômica/métodos , Hibridização in Situ Fluorescente , Cariótipo , Cariotipagem
9.
BMC Bioinformatics ; 21(1): 365, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32838742

RESUMO

BACKGROUND: The amount of published full-text articles has increased dramatically. Text mining tools configure an essential approach to building biological networks, updating databases and providing annotation for new pathways. PESCADOR is an online web server based on LAITOR and NLProt text mining tools, which retrieves protein-protein co-occurrences in a tabular-based format, adding a network schema. Here we present an HPC-oriented version of PESCADOR's native text mining tool, renamed to LAITOR4HPC, aiming to access an unlimited abstract amount in a short time to enrich available networks, build new ones and possibly highlight whether fields of research have been exhaustively studied. RESULTS: By taking advantage of parallel computing HPC infrastructure, the full collection of MEDLINE abstracts available until June 2017 was analyzed in a shorter period (6 days) when compared to the original online implementation (with an estimated 2 years to run the same data). Additionally, three case studies were presented to illustrate LAITOR4HPC usage possibilities. The first case study targeted soybean and was used to retrieve an overview of published co-occurrences in a single organism, retrieving 15,788 proteins in 7894 co-occurrences. In the second case study, a target gene family was searched in many organisms, by analyzing 15 species under biotic stress. Most co-occurrences regarded Arabidopsis thaliana and Zea mays. The third case study concerned the construction and enrichment of an available pathway. Choosing A. thaliana for further analysis, the defensin pathway was enriched, showing additional signaling and regulation molecules, and how they respond to each other in the modulation of this complex plant defense response. CONCLUSIONS: LAITOR4HPC can be used for an efficient text mining based construction of biological networks derived from big data sources, such as MEDLINE abstracts. Time consumption and data input limitations will depend on the available resources at the HPC facility. LAITOR4HPC enables enough flexibility for different approaches and data amounts targeted to an organism, a subject, or a specific pathway. Additionally, it can deliver comprehensive results where interactions are classified into four types, according to their reliability.


Assuntos
Software , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Bases de Dados Factuais , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas , Zea mays/metabolismo
10.
Genet Mol Biol ; 42(4): e20190112, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32059051

RESUMO

Interspecific hybridization is required for the development of Jatropha curcas L. improved cultivars, due to its narrow genetic basis. The present study aimed to analyze the parental genomic composition of F1 and BC1F1 generations derived from interspecific crosses (J. curcas/J. integerrima and J. curcas/J. multifida) by GISH (Genomic In Situ Hybridization), and the meiotic index and pollen viability of F1 hybrids. In F1 cells from both hybrids, 11 chromosomes of each parental was observed, as expected, but chromosome rearrangement events could be detected using rDNA chromosome markers, suggesting unbalanced cells. In the BC1F1, both hybrids had 22 chromosomes, suggesting that only n = 11 gametes were viable in the next generation. However, GISH allowed the identification of three and two alien chromosomes in J. curcas//J. integerrima and J. curcas//J. multifida BC1F1 hybrids, respectively, suggesting a preferential transmission of J. curcas chromosomes for both hybrids. Pollen viability in F1 hybrids derived from J. curcas/J. integerrima crosses were higher (82-83%) than those found for J. curcas/J. multifida (68%), showing post-meiotic problems in these last hybrids, with dyads, triads, polyads, and micronuclei as post-meiosis results. The here presented cytogenetic characterization of interspecific hybrids and their backcross progenies can contribute to the selection of the best genotypes for future assisted breeding of J. curcas.

11.
Genet Mol Biol ; 41(2): 442-449, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29767665

RESUMO

Jatropha is an important genus of Euphorbiaceae, with species largely used for various purposes, including the manufacturing of soaps and pharmaceutical products and applications in the bioenergetic industry. Although there have been several studies focusing J. curcas in various aspects, the karyotype features of Jatropha species are poorly known. Therefore, we analyzed six Jatropha species through fluorochrome staining (CMA/DAPI), fluorescent in situ hybridization (FISH) with 5S and 45S rDNA probes and genome size estimation by flow cytometry. Our results revealed several chromosome markers by both CMA/DAPI and FISH for the analyzed species. Five Jatropha species (J. curcas, J. gossypiifolia, J. integerrima, J. multifida and J. podagrica) showed four CMA-positive (CMA+) bands associated with the 5S and 45S rDNA sites (one and two pairs, respectively). However, J. mollissima displayed six CMA+/DAPI- bands co-localized with both 5S and 45S rDNA, which showed a FISH superposition. A gradual variation in the genome sizes was observed (2C = 0.64 to 0.86 pg), although an association between evidenced heterochromatin and genome sizes was not found among species. Except for the unique banding pattern of J. mollissima and the pericentromeric heterochromatin of J. curcas and J. podagrica, our data evidenced relatively conserved karyotypes.

12.
An Acad Bras Cienc ; 89(1): 317-331, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28423086

RESUMO

Mansoa hirsuta (Bignoniaceae) is a native plant from caatinga in Brazilian semiarid. This plant has been locally used as antimicrobial and hypoglycemiant agents, but their action mechanisms and toxicity remain largely unknown. Therefore, we evaluated the composition and antioxidant, cytoprotective and hypoglycemiant effects of raw extract, fractions and compounds from leaves of M. hirsuta. The cytogenotoxic effects of ursolic and oleanolic acids, the main phytotherapic components of this plant, were assessed. The raw extract and fractions presented steroids, saponins, flavonols, flavanonols, flavanones, xanthones, phenols, tannins, anthocyanins, anthocyanidins and flavonoids. The ethyl acetate fraction inhibited efficiently the cascade of lipid peroxidation while the hydroalcoholic fraction was richer in total phenols and more efficient in capturing 2,2-diphenyl-1-picrylhydrazyl (·DPPH) and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS·+) radicals. The isolated fraction of M. hirsuta also inhibited the α-amylase activity. Cytotoxic effects were absent in both raw extract and fractions while ursolic+oleanolic acids were efficient in protecting cells after exposure to hydrogen peroxide. Moreover, this mixture of acid shad no significant interference on the mitotic index and frequency of nuclear and/or chromosomal abnormalities in Allium cepa test. Therefore, M. hirsuta represents a potential source of phytochemicals against inflammatory and oxidative pathologies, including diabetes.


Assuntos
Antioxidantes/farmacologia , Bignoniaceae/química , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Animais , Antioxidantes/isolamento & purificação , Brasil , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cricetinae , Citoproteção , Etanol/química , Fibroblastos/efeitos dos fármacos , Hipoglicemiantes/isolamento & purificação , Cebolas/efeitos dos fármacos , Folhas de Planta/química , Valores de Referência , Reprodutibilidade dos Testes , Triterpenos/química , alfa-Amilases/química
13.
Chromosome Res ; 23(2): 253-66, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25634499

RESUMO

Cowpea (Vigna unguiculata) is an annual legume grown in tropical and subtropical regions, which is economically relevant due to high protein content in dried beans, green pods, and leaves. In this work, a comparative cytogenetic study between V. unguiculata and Phaseolus vulgaris (common bean) was conducted using BAC-FISH. Sequences previously mapped in P. vulgaris chromosomes (Pv) were used as probes in V. unguiculata chromosomes (Vu), contributing to the analysis of macrosynteny between both legumes. Thirty-seven clones from P. vulgaris 'BAT93' BAC library, corresponding to its 11 linkage groups, were hybridized in situ. Several chromosomal rearrangements were identified, such as translocations (between BACs from Pv1 and Pv8; Pv2 and Pv3; as well as Pv2 and Pv11), duplications (BAC from Pv3), as well as paracentric and pericentric inversions (BACs from Pv3, and Pv4, respectively). Two BACs (from Pv2 and Pv7), which hybridized at terminal regions in almost all P. vulgaris chromosomes, showed single-copy signal in Vu. Additionally, 17 BACs showed no signal in V. unguiculata chromosomes. The present results demonstrate the feasibility of using BAC libraries in comparative chromosomal mapping and karyotype evolution studies between Phaseolus and Vigna species, and revealed several macrosynteny and collinearity breaks among both legumes.


Assuntos
Cromossomos Artificiais Bacterianos , Cromossomos de Plantas , Hibridização in Situ Fluorescente , Phaseolus/genética , Translocação Genética , Mapeamento Cromossômico
14.
Genet Mol Biol ; 38(1): 93-100, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25983630

RESUMO

Jatropha gossypiifolia L. (Euphorbiaceae), popularly known as cotton-leaf physicnut, is a milky shrub notable for its medicinal properties. The present study aimed to evaluate the toxic, cytotoxic and genotoxic effects of the latex of J. gossypiifolia, using Allium cepa L. as test system. Seeds of A. cepa were exposed to five concentrations of the latex (1.25; 2.5; 5; 10 and 20 mL/L) in order to evaluate parameters of toxicity (evaluation of root growth), cytotoxicity (mitotic index frequency) and genotoxicity (frequency of chromosome alterations). The latex showed a significant decrease in root mean growth value as well as mitotic index for the tested concentrations, except for 1.25 mL/L, when compared to results from the negative control. The 1.25, 2.5 and 5 mL/L concentrations induced significant chromo-some adherences, C-metaphases and/or chromosome bridges, as genotoxic effects. The significant frequency of chromosome bridges also indicated mutagenic potential for chromosomes of J. gossypiifolia as discussed in the paper. Considering that the latex is used in popular therapies, and that the test system A. cepa presents good correlation with tests carried out in mammals, it can be pointed out that its use for medicinal purposes may be harmful to human health especially if ingested.

15.
Protoplasma ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467939

RESUMO

The genus Vigna (Leguminosae) comprises about 150 species grouped into five subgenera. The present study aimed to improve the understanding of karyotype diversity and evolution in Vigna, using new and previously published data through different cytogenetic and DNA content approaches. In the Vigna subgenera, we observed a random distribution of rDNA patterns. The 35S rDNA varied in position, from terminal to proximal, and in number, ranging from one (V. aconitifolia, V. subg. Ceratotropis) to seven pairs (V. unguiculata subsp. unguiculata, V. subg. Vigna). On the other hand, the number of 5S rDNA was conserved (one or two pairs), except for V. radiata (V. subg. Ceratotropis), which had three pairs. Genome size was relatively conserved within the genus, ranging from 1C = 0.43 to 0.70 pg in V. oblongifolia and V. unguiculata subsp. unguiculata, respectively, both belonging to V. subg. Vigna. However, we observed a positive correlation between DNA content and the number of 35S rDNA sites. In addition, data from chromosome-specific BAC-FISH suggest that the ancestral 35S rDNA locus is conserved on chromosome 6 within Vigna. Considering the rapid diversification in the number and position of rDNA sites, such conservation is surprising and suggests that additional sites may have spread out from this ancestral locus.

16.
Plants (Basel) ; 12(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37765410

RESUMO

Stylosanthes scabra is a scientifically orphaned legume found in the Brazilian Caatinga biome (a semi-arid environment). This work utilized omics approaches to investigate some ecophysiological aspects of stress tolerance/resistance in S. scabra, study its genomic landscape, and predict potential metabolic pathways. Considering its high-confidence conceptual proteome, 1694 (~2.6%) proteins were associated with resistance proteins, some of which were found in soybean QTL regions that confer resistance to Asian soybean rust. S. scabra was also found to be a potential source of terpenes, as biosynthetic gene clusters associated with terpene biosynthesis were identified in its genome. The analysis revealed that mobile elements comprised approximately 59% of the sequenced genome. In the remaining 41% of the sections, some of the 22,681 protein-coding gene families were categorized into two informational groups: those that were specific to S. scabra and those that expanded significantly compared to their immediate ancestor. Biological process enrichment analyses indicated that these gene families play fundamental roles in the adaptation of S. scabra to extreme environments. Additionally, phylogenomic analysis indicated a close evolutionary relationship between the genera Stylosanthes and Arachis. Finally, this study found a high number (57) of aquaporin-encoding loci in the S. scabra genome. RNA-Seq and qPCR data suggested that the PIP subfamily may play a key role in the species' adaptation to water deficit conditions. Overall, these results provide valuable insights into S. scabra biology and a wealth of gene/transcript information for future legume omics studies.

17.
Gene ; 823: 146377, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35231571

RESUMO

Cowpea [Vigna unguiculata (L.) Walp.] is one of the most tolerant legume crops to drought and salt stresses. WRKY transcription factor (TF) family members stand out among plant transcriptional regulators related to abiotic stress tolerance. However, little information is currently available on the expression of the cowpea WRKY gene family (VuWRKY) in response to water deficit. Thus, we analyzed genomic and transcriptomic data from cowpea to identify VuWRKY members and characterize their structure and transcriptional response under root dehydration stress. Ninety-two complete VuWRKY genes were found in the cowpea genome based on their domain characteristics. They were clustered into three groups: I (15 members), II (58), and III (16), while three genes were unclassified. Domain analysis of the encoded proteins identified four major variants of the conserved heptapeptide motif WRKYGQK. In silico analysis of VuWRKY gene promoters identified eight candidate binding motifs of cis-regulatory elements, regulated mainly by six TF families associated with abiotic stress responses. Ninety-seven VuWRKY modulated splicing variants associated with 55 VuWRKY genes were identified via RNA-Seq analysis available at the Cowpea Genomics Consortium (CpGC) database. qPCR analyses showed that 22 genes are induced under root dehydration, with VuWRKY18, 21, and 75 exhibiting the most significant induction levels. Given their central role in activating signal transduction cascades in abiotic stress response, the data provide a foundation for the targeted modification of specific VuWRKY family members to improve drought tolerance in this important climate-resilient legume in the developing world and beyond.


Assuntos
Perfilação da Expressão Gênica/métodos , Genômica/métodos , Fatores de Transcrição/química , Fatores de Transcrição/genética , Vigna/genética , Processamento Alternativo , Motivos de Aminoácidos , Mapeamento Cromossômico , Secas , Regulação da Expressão Gênica de Plantas , Família Multigênica , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raízes de Plantas/genética , Regiões Promotoras Genéticas , Domínios Proteicos , RNA-Seq , Estresse Fisiológico
18.
PLoS One ; 13(11): e0207318, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30440003

RESUMO

Philodendron s.l. (Araceae) has been recently focus of taxonomic and phylogenetic studies, but karyotypic data are limited to chromosome numbers and a few published genome sizes. In this work, karyotypes of 34 species of Philodendron s.l. (29 species of Philodendron and five of Thaumatophyllum), ranging from 2n = 28 to 36 chromosomes, were analyzed by fluorescence in situ hybridization (FISH) with rDNA and telomeric probes, aiming to understand the evolution of the karyotype diversity of the group. Philodendron presented a high number variation of 35S rDNA, ranging from two to 16 sites, which were mostly in the terminal region of the short arms, with nine species presenting heteromorphisms. In the case of Thaumatophyllum species, we observed a considerably lower variation, which ranged from two to four terminal sites. The distribution of the 5S rDNA clusters was more conserved, with two sites for most species, being preferably located interstitially in the long chromosome arms. For the telomeric probe, while exclusively terminal sites were observed for P. giganteum (2n = 30) chromosomes, P. callosum (2n = 28) presented an interstitial distribution associated with satellite DNA. rDNA sites of the analyzed species of Philodendron s.l. species were randomly distributed considering the phylogenetic context, probably due to rapid evolution and great diversity of these genomes. The observed heteromorphisms suggest the accumulation of repetitive DNA in the genomes of some species and the occurrence of chromosomal rearrangements along the karyotype evolution of the group.


Assuntos
Mapeamento Cromossômico , Cromossomos de Plantas/genética , DNA de Plantas/genética , DNA Ribossômico/genética , Cariótipo , Philodendron/genética , Especificidade da Espécie
19.
Chemosphere ; 204: 344-350, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29674146

RESUMO

Algal wastewater remediation has become attractive for a couple of years now, however the effectiveness of genetic toxicity reducing of some by-products through microalgae are still not well reported. This study aimed to evaluate the growth, nutrients and toxicity removal of Chlorella vulgaris cultivated under autotrophic and mixotrophic conditions in three agro-industrial by-products. Mixotrophic culture using corn steep liquor showed higher cell concentration, specific growth rate, maximum cell productivity and biomass protein content when compared to cheese whey and vinasse. Nutrient removal results showed that C. vulgaris was able to completely remove corn steep liquor nutrients, while in cheese whey and vinasse culture this removal was not as efficient, observing remaining COD. This work evaluated for the first time the corn steep liquor and cheese whey genetic toxicity through Allium cepa seeds assay. These results demonstrate that corn steep liquor toxicity was totally eliminated by C. vulgaris cultivation, and cheese whey and vinasse toxicity were minimized. This study proves that the mixotrophic cultivation of C. vulgaris can increase cellular productivity, as well as it is a suitable and economic alternative to remove the toxicity from agroindustrial by-products.


Assuntos
Agricultura , Biomassa , Chlorella vulgaris/crescimento & desenvolvimento , Resíduos Industriais , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Chlorella vulgaris/metabolismo
20.
J Ethnopharmacol ; 170: 16-9, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-25937254

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Euphorbia hyssopifolia L. is a weed with recognized antimicrobial potential employed in Indian, Asian and Latin-American popular medicine. However, little is known with regard to its toxic potential. The present study aimed to investigate the cytotoxic and genotoxic effects of ethanolic extract of E. hyssopifolia in HepG2 cell culture. MATERIALS AND METHODS: Phytochemical screening of ethanolic extract was carried out to determine the presence of active secondary plant metabolites. Six concentrations (0.00001, 0.0001, 0.001, 0.01, 0.1 and 1.0mg/mL) of ethanolic extract were tested by the MTT assay to verify cytotoxicity. Then, genotoxic evaluations (alkaline comet assay and cytokinesis-block micronucleus assay - CBMN) were carried out in HepG2 cells with extract concentrations of 0.01, 0.1 and 1.0mg/mL. RESULTS: Mono and sesquiterpenes, triterpenes and steroids, and flavonoids were the main classes found in the phytochemical screening. Extract concentrations used in the MTT assay showed no cytotoxic activity. On the other hand, genotoxic activity was verified at 0.1 and 1.0mg/mL in the alkaline comet assay. Additionally, the 1.0mg/mL concentration induced severe cell damage leading to death in the CBMN assay, indicating a cytotoxic effect for this concentration in the latter method. CONCLUSION: The use of E. hyssopifolia extract for medicinal purposes should be avoided, because concentrations above 0.01mg/mL may pose risk to human health due to cytotoxic and/or genotoxic effects.


Assuntos
Euphorbia/química , Mutagênicos/toxicidade , Extratos Vegetais/toxicidade , Morte Celular/efeitos dos fármacos , Ensaio Cometa , Relação Dose-Resposta a Droga , Etanol/química , Euphorbia/metabolismo , Células Hep G2 , Humanos , Testes para Micronúcleos , Mutagênicos/isolamento & purificação , Extratos Vegetais/administração & dosagem , Metabolismo Secundário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA