Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nature ; 437(7057): 376-80, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16056220

RESUMO

The proliferation of large-scale DNA-sequencing projects in recent years has driven a search for alternative methods to reduce time and cost. Here we describe a scalable, highly parallel sequencing system with raw throughput significantly greater than that of state-of-the-art capillary electrophoresis instruments. The apparatus uses a novel fibre-optic slide of individual wells and is able to sequence 25 million bases, at 99% or better accuracy, in one four-hour run. To achieve an approximately 100-fold increase in throughput over current Sanger sequencing technology, we have developed an emulsion method for DNA amplification and an instrument for sequencing by synthesis using a pyrosequencing protocol optimized for solid support and picolitre-scale volumes. Here we show the utility, throughput, accuracy and robustness of this system by shotgun sequencing and de novo assembly of the Mycoplasma genitalium genome with 96% coverage at 99.96% accuracy in one run of the machine.


Assuntos
Genoma Bacteriano , Genômica/instrumentação , Microquímica/instrumentação , Mycoplasma genitalium/genética , Análise de Sequência de DNA/instrumentação , Eletroforese Capilar , Emulsões , Tecnologia de Fibra Óptica , Genômica/economia , Microquímica/economia , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Sequência de DNA/economia , Fatores de Tempo
2.
PLoS One ; 11(1): e0146687, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26756901

RESUMO

BACKGROUND: Ultra deep sequencing is of increasing use not only in research but also in diagnostics. For implementation of ultra deep sequencing assays in clinical laboratories for routine diagnostics, intra- and inter-laboratory testing are of the utmost importance. METHODS: A multicenter study was conducted to validate an updated assay design for 454 Life Sciences' GS FLX Titanium system targeting protease/reverse transcriptase (RTP) and env (V3) regions to identify HIV-1 drug-resistance mutations and determine co-receptor use with high sensitivity. The study included 30 HIV-1 subtype B and 6 subtype non-B samples with viral titers (VT) of 3,940-447,400 copies/mL, two dilution series (52,129-1,340 and 25,130-734 copies/mL), and triplicate samples. Amplicons spanning PR codons 10-99, RT codons 1-251 and the entire V3 region were generated using barcoded primers. Analysis was performed using the GS Amplicon Variant Analyzer and geno2pheno for tropism. For comparison, population sequencing was performed using the ViroSeq HIV-1 genotyping system. RESULTS: The median sequencing depth across the 11 sites was 1,829 reads per position for RTP (IQR 592-3,488) and 2,410 for V3 (IQR 786-3,695). 10 preselected drug resistant variants were measured across sites and showed high inter-laboratory correlation across all sites with data (P<0.001). The triplicate samples of a plasmid mixture confirmed the high inter-laboratory consistency (mean% ± stdev: 4.6 ±0.5, 4.8 ±0.4, 4.9 ±0.3) and revealed good intra-laboratory consistency (mean% range ± stdev range: 4.2-5.2 ± 0.04-0.65). In the two dilutions series, no variants >20% were missed, variants 2-10% were detected at most sites (even at low VT), and variants 1-2% were detected by some sites. All mutations detected by population sequencing were also detected by UDS. CONCLUSIONS: This assay design results in an accurate and reproducible approach to analyze HIV-1 mutant spectra, even at variant frequencies well below those routinely detectable by population sequencing.


Assuntos
Comportamento Cooperativo , Farmacorresistência Viral/genética , HIV-1/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Tropismo/genética , Aminoácidos/genética , Seguimentos , Humanos , Mutação/genética , Plasmídeos/genética , Reprodutibilidade dos Testes
3.
J Virol Methods ; 204: 31-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24731928

RESUMO

The detection of mutant spectra within the viral quasispecies is critical for therapeutic management of HIV-1 infections. Routine clinical application of ultrasensitive genotyping requires reproducibility and concordance within and between laboratories. The goal of the study was to evaluate a new protocol on HIV-1 drug resistance testing by 454 ultra-deep pyrosequencing (454-UDS) in an international multicenter study. Sixteen blinded HIV-1 subtype B samples were provided for 454-UDS as both RNA and cDNA with viral titers of 88,600-573,000 HIV-1 RNA copies/ml. Eight overlapping amplicons spanning protease (PR) codons 10-99 and reverse transcriptase (RT) codons 1-251 were generated using molecular barcoded primers. 454-UDS was performed using the 454 Life Sciences/Roche GS FLX platform. PR and RT sequences were analyzed using 454 Life Sciences Amplicon Variant Analyzer (AVA) software. Quantified variation data were analyzed for intra-laboratory reproducibility and inter-laboratory concordance. Routine population sequencing was performed using the ViroSeq HIV-1 genotyping system. Eleven laboratories and the reference laboratory 454 Life Sciences sequenced the HIV-1 sample set. Data presented are derived from seven laboratories and the reference laboratory since severe study protocol execution errors occurred in four laboratories leading to exclusion. The median sequencing depth across all sites was 1364 reads per position (IQR=809-2065). 100% of the ViroSeq-reported mutations were also detected by 454-UDS. Minority HIV-1 drug resistance mutations, defined as HIV-1 drug resistance mutations identified at frequencies of 1-25%, were only detected by 454-UDS. Analysis of 10 preselected majority and minority mutations were consistently found across sites. The analysis of drug-resistance mutations detected between 1 and 10% demonstrated high intra- and inter-laboratory consistency in frequency estimates for both RNA and prepared cDNA samples, indicating robustness of the method. HIV-1 drug resistance testing using 454 ultra-deep pyrosequencing results in an accurate and highly reproducible, albeit complex, approach to the analysis of HIV-1 mutant spectra, even at frequencies well below those detected by routine population sequencing.


Assuntos
Farmacorresistência Viral , Técnicas de Genotipagem/métodos , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Cooperação Internacional , Biologia Computacional/métodos , HIV-1/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana/métodos , Software
4.
AIDS ; 23(10): 1209-18, 2009 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-19424056

RESUMO

OBJECTIVE: Identification of low-frequency variants is of clinical importance in the identification of preexisting drug resistance. Using 'ultra-deep' sequencing, we address the detection of potential resistance to the chemokine (C-C motif) receptor 5 (CCR5) antagonist, maraviroc, due to the pretreatment presence of low levels of chemokine (CXC motif) receptor 4 (CXCR4)-using virus. METHODS: We present a novel protocol for the phenotyping of HIV based on '454' pyrosequence data and apply this to two large data sets comprised of 104 628 (before treatment, day 1) and 191 637 (after treatment, day 11) reads from the envelope region. We study resistance in the context of the evolutionary history of the intrapatient viral population. Variation was also investigated both within and outside the V3 region, the region associated with the receptor switch. RESULTS: CXCR4-using virus can be detected at low frequency prior to maraviroc treatment ( approximately 0.5%) and at high frequency after failure of monotherapy ( approximately 81%). Inferring an evolutionary tree from the 1674 unique reads that span the V3 region confirms that the CXCR4-using population emerged from low-frequency CXCR4-using variants present before treatment. Changes in the frequency of amino acid residues used at individual sites were found in regions outside the V3 region, indicative of other potential sites associated with receptor usage. CONCLUSION: We have provided a high-resolution snapshot of intrapatient viral variation, prior and after treatment with maraviroc, and detected preexisting CXCR4-using variants present at an extremely low frequency. The evolutionary analysis demonstrates the extent of diversity present at a single time point within an infected individual and the rapid effect of drug pressure on the structure of a viral population.


Assuntos
Infecções por HIV/virologia , HIV-1/metabolismo , Receptores CXCR4/metabolismo , Cicloexanos/farmacologia , DNA Viral/genética , Farmacorresistência Viral/genética , Evolução Molecular , Inibidores da Fusão de HIV/farmacologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , HIV-1/efeitos dos fármacos , HIV-1/genética , Humanos , Maraviroc , Fenótipo , Filogenia , Receptores CXCR4/antagonistas & inibidores , Alinhamento de Sequência , Análise de Sequência de DNA/métodos , Triazóis/farmacologia
5.
J Infect Dis ; 199(5): 693-701, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19210162

RESUMO

BACKGROUND: Minor (i.e., <20% prevalence) drug-resistant human immunodeficiency virus (HIV) variants may go undetected, yet be clinically important. OBJECTIVES: To compare the prevalence of drug-resistant variants detected with standard and ultra-deep sequencing (detection down to 1% prevalence) and to determine the impact of minor resistant variants on virologic failure (VF). METHODS: The Flexible Initial Retrovirus Suppressive Therapies (FIRST) Study (N = 1397) compared 3 initial antiretroviral therapy (ART) strategies. A random subset (n = 491) had baseline testing for drug-resistance mutations performed by use of standard sequencing methods. Ultra-deep sequencing was performed on samples that had sufficient viral content (N = 264). Proportional hazards models were used to compare rates of VF for those who did and did not have mutations identified. RESULTS: Mutations were detected by standard and ultra-deep sequencing (in 14% and 28% of participants, respectively; P < .001). Among individuals who initiated treatment with an ART regimen that combined nucleoside and nonnucleoside reverse-transcriptase inhibitors (hereafter, "NNRTI strategy"), all individuals who had an NNRTI-resistance mutation identified by ultra-deep sequencing experienced VF. When these individuals were compared with individuals who initiated treatment with the NNRTI strategy but who had no NNRTI-resistance mutations, the risk of VF was higher for those who had an NNRTI-resistance mutation detected by both methods (hazard ratio [HR], 12.40 [95% confidence interval {CI}, 3.41-45.10]) and those who had mutation(s) detected only with ultra-deep sequencing (HR, 2.50 [95% CI, 1.17-5.36]). CONCLUSIONS: Ultra-deep sequencing identified a significantly larger proportion of HIV-infected, treatment-naive persons as harboring drug-resistant viral variants. Among participants who initiated treatment with the NNRTI strategy, the risk of VF was significantly greater for participants who had low- and high-prevalence NNRTI-resistant variants.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Farmacorresistência Viral , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , Adulto , Doença Crônica , DNA Complementar/química , Progressão da Doença , Feminino , Variação Genética , HIV-1/genética , Humanos , Masculino , Mutação , RNA Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA