Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Genet ; 22(12): 791-807, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34408318

RESUMO

The rapidly emerging field of macrogenetics focuses on analysing publicly accessible genetic datasets from thousands of species to explore large-scale patterns and predictors of intraspecific genetic variation. Facilitated by advances in evolutionary biology, technology, data infrastructure, statistics and open science, macrogenetics addresses core evolutionary hypotheses (such as disentangling environmental and life-history effects on genetic variation) with a global focus. Yet, there are important, often overlooked, limitations to this approach and best practices need to be considered and adopted if macrogenetics is to continue its exciting trajectory and reach its full potential in fields such as biodiversity monitoring and conservation. Here, we review the history of this rapidly growing field, highlight knowledge gaps and future directions, and provide guidelines for further research.


Assuntos
Variação Genética , Genética , Animais , Biodiversidade , Bases de Dados Genéticas , Técnicas Genéticas , Genética Populacional , Humanos , Filogeografia , Fluxo de Trabalho
2.
Nat Rev Genet ; 20(10): 615-628, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31300751

RESUMO

Billions of hectares of natural ecosystems have been degraded through human actions. The global community has agreed on targets to halt and reverse these declines, and the restoration sector faces the important but arduous task of implementing programmes to meet these objectives. Existing and emerging genomics tools offer the potential to improve the odds of achieving these targets. These tools include population genomics that can improve seed sourcing, meta-omics that can improve assessment and monitoring of restoration outcomes, and genome editing that can generate novel genotypes for restoring challenging environments. We identify barriers to adopting these tools in a restoration context and emphasize that regulatory and ethical frameworks are required to guide their use.


Assuntos
Conservação dos Recursos Naturais/métodos , Genômica/métodos , Animais , Biodiversidade , Ecossistema , Humanos
3.
Environ Res ; 246: 118115, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199470

RESUMO

Mounting evidence supports the connections between exposure to environmental typologies(such as green and blue spaces)and human health. However, the mechanistic links that connect biodiversity (the variety of life) and human health, and the extent of supporting evidence remain less clear. Here, we undertook a scoping review to map the links between biodiversity and human health and summarise the levels of associated evidence using an established weight of evidence framework. Distinct from other reviews, we provide additional context regarding the environment-microbiome-health axis, evaluate the environmental buffering pathway (e.g., biodiversity impacts on air pollution), and provide examples of three under- or minimally-represented linkages. The examples are (1) biodiversity and Indigenous Peoples' health, (2) biodiversity and urban social equity, and (3) biodiversity and COVID-19. We observed a moderate level of evidence to support the environmental microbiota-human health pathway and a moderate-high level of evidence to support broader nature pathways (e.g., greenspace) to various health outcomes, from stress reduction to enhanced wellbeing and improved social cohesion. However, studies of broader nature pathways did not typically include specific biodiversity metrics, indicating clear research gaps. Further research is required to understand the connections and causative pathways between biodiversity (e.g., using metrics such as taxonomy, diversity/richness, structure, and function) and health outcomes. There are well-established frameworks to assess the effects of broad classifications of nature on human health. These can assist future research in linking biodiversity metrics to human health outcomes. Our examples of underrepresented linkages highlight the roles of biodiversity and its loss on urban lived experiences, infectious diseases, and Indigenous Peoples' sovereignty and livelihoods. More research and awareness of these socioecological interconnections are needed.


Assuntos
Poluição do Ar , Biodiversidade , Humanos , Povos Indígenas
4.
Environ Res ; 252(Pt 1): 118814, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38555095

RESUMO

Indigenous health interventions have emerged in New Zealand aimed at increasing people's interactions with and exposure to macro and microbial diversity. Urban greenspaces provide opportunities for people to gain such exposures. However, the dynamics and pathways of microbial transfer from natural environments onto a person remain poorly understood. Here, we analysed bacterial 16S rRNA amplicons in air samples (n = 7) and pre- and post-exposure nasal samples (n = 238) from 35 participants who had 30-min exposures in an outdoor park. The participants were organised into two groups: over eight days each group had two outdoor park exposures and two indoor office exposures, with a cross-over study design and washout days between exposure days. We investigated the effects of participant group, location (outdoor park vs. indoor office), and exposures (pre vs. post) on the nasal bacterial community composition and three key suspected health-associated bacterial indicators (alpha diversity, generic diversity of Gammaproteobacteria, and read abundances of butyrate-producing bacteria). The participants had distinct nasal bacterial communities, but these communities did not display notable shifts in composition following exposures. The community composition and key health bacterial indicators were stable throughout the trial period, with no clear or consistent effects of group, location, or exposure. We conclude that 30-min exposure periods to urban greenspaces are unlikely to create notable changes in the nasal microbiome of visitors, which contrasts with previous research. Our results suggest that longer exposures or activities that involves closer interaction with microbial rich ecological components (e.g., soil) are required for greenspace exposures to result in noteworthy changes in the nasal microbiome.


Assuntos
Microbiota , Nariz , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Microbiologia do Ar , Poluentes Atmosféricos/análise , Bactérias/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Estudos de Coortes , Estudos Cross-Over , Exposição Ambiental , Povo Maori , Nova Zelândia , Nariz/microbiologia , Parques Recreativos , RNA Ribossômico 16S/análise
5.
Environ Sci Technol ; 57(18): 7273-7284, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37097110

RESUMO

Our understanding of the role urbanization has in augmenting invasive species that carry human bacterial pathogens and antimicrobial resistance (AMR) remains poorly understood. Here, we investigated the gut bacterial communities, antibiotic resistance genes (ARGs) and potential antibiotic-resistant pathogens in giant African snails (Achatina fulica) collected across an urbanization gradient in Xiamen, China (n = 108). There was a lack of correlation between the microbial profiles of giant African snails and the soils of their habitats, and the resistome and human-associated bacteria were significantly higher than those of native snails as well as soils. We observed high diversity (601 ARG subtypes) and abundance (1.5 copies per 16S rRNA gene) of giant African snail gut resistome. Moreover, giant African snails in more urban areas had greater diversity and abundance of high-risk ARGs and potential human bacterial pathogens (e.g., ESKAPE pathogens). We highlight that urbanization significantly impacted the gut microbiomes and resistomes of these invasive snails, indicating that they harbor greater biological contaminants such as ARGs and potential human bacterial pathogens than native snails and soils. This study advances our understanding of the effect of urbanization on human bacterial pathogens and AMR in a problematic invasive snail and should help combat risks associated with invasive species under the One Health framework.


Assuntos
Antibacterianos , Urbanização , Humanos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , RNA Ribossômico 16S/genética , Bactérias/genética , Genes Bacterianos , Solo
6.
Proc Biol Sci ; 289(1976): 20220538, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35642363

RESUMO

Polyploidy has the potential to allow organisms to outcompete their diploid progenitor(s) and occupy new environments. Shark Bay, Western Australia, is a World Heritage Area dominated by temperate seagrass meadows including Poseidon's ribbon weed, Posidonia australis. This seagrass is at the northern extent of its natural geographic range and experiences extremes in temperature and salinity. Our genomic and cytogenetic assessments of 10 meadows identified geographically restricted, diploid clones (2n = 20) in a single location, and a single widespread, high-heterozygosity, polyploid clone (2n = 40) in all other locations. The polyploid clone spanned at least 180 km, making it the largest known example of a clone in any environment on earth. Whole-genome duplication through polyploidy, combined with clonality, may have provided the mechanism for P. australis to expand into new habitats and adapt to new environments that became increasingly stressful for its diploid progenitor(s). The new polyploid clone probably formed in shallow waters after the inundation of Shark Bay less than 8500 years ago and subsequently expanded via vegetative growth into newly submerged habitats.


Assuntos
Alismatales , Tubarões , Animais , Diploide , Ecossistema , Poliploidia
7.
Mol Ecol ; 31(14): 3963-3970, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35621391

RESUMO

Toxoplasma infection in intermediate host species closely associates with inflammation. This association has led to suggestions that the behavioural changes associated with infection may be indirectly driven by the resulting sustained inflammation rather than a direct behavioural manipulation by the parasite. If this is correct, sustained inflammation in chronically infected rodents should present as widespread differences in the gastrointestinal microbiota due to the dependency between the composition of these microbiota and sustained inflammation. We conducted a randomized controlled experiment in rats that were assigned to a Toxoplasma-treatment, placebo-treatment or negative control group. We euthanised rats during the chronic phase of infection, collected their caecal stool samples and sequenced the V3-V4 region of the 16S rRNA gene to characterize the bacterial community in these samples. Toxoplasma infection did not induce widespread differences in the bacterial community composition of the gastrointestinal tract of rats. Rather, we found sex differences in the bacterial community composition of rats. We conclude that it is unlikely that sustained inflammation is the mechanism driving the highly specific behavioural changes observed in Toxoplasma-positive rats.


Assuntos
Microbioma Gastrointestinal , Toxoplasma , Animais , Bactérias , Feminino , Microbioma Gastrointestinal/genética , Inflamação/microbiologia , Inflamação/parasitologia , Masculino , RNA Ribossômico 16S/genética , Ratos , Toxoplasma/genética
8.
J Environ Manage ; 310: 114748, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35192978

RESUMO

In post-mining rehabilitation, successful mine closure planning requires specific, measurable, achievable, relevant and time-bound (SMART) completion criteria, such as returning ecological communities to match a target level of similarity to reference sites. Soil microbiota are fundamentally linked to the restoration of degraded ecosystems, helping to underpin ecological functions and plant communities. High-throughput sequencing of soil eDNA to characterise these communities offers promise to help monitor and predict ecological progress towards reference states. Here we demonstrate a novel methodology for monitoring and evaluating ecological restoration using three long-term (>25 year) case study post-mining rehabilitation soil eDNA-based bacterial community datasets. Specifically, we developed rehabilitation trajectory assessments based on similarity to reference data from restoration chronosequence datasets. Recognising that numerous alternative options for microbiota data processing have potential to influence these assessments, we comprehensively examined the influence of standard versus compositional data analyses, different ecological distance measures, sequence grouping approaches, eliminating rare taxa, and the potential for excessive spatial autocorrelation to impact on results. Our approach reduces the complexity of information that often overwhelms ecologically-relevant patterns in microbiota studies, and enables prediction of recovery time, with explicit inclusion of uncertainty in assessments. We offer a step change in the development of quantitative microbiota-based SMART metrics for measuring rehabilitation success. Our approach may also have wider applications where restorative processes facilitate the shift of microbiota towards reference states.


Assuntos
Microbiota , Solo , Bactérias/genética , Benchmarking , Microbiologia do Solo
9.
Ecol Lett ; 24(6): 1282-1284, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33749962

RESUMO

Millette et al. (Ecology Letters, 2020, 23:55-67) reported no consistent worldwide anthropogenic effects on animal genetic diversity using repurposed mitochondrial DNA sequences. We reexamine data from this study, describe genetic marker and scale limitations which might lead to misinterpretations with conservation implications, and provide advice to improve future macrogenetic studies.


Assuntos
DNA Mitocondrial , Variação Genética , Animais , DNA Mitocondrial/genética , Ecologia , Marcadores Genéticos
10.
Environ Res ; 196: 110425, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33157108

RESUMO

The vegetation and soil microbiome within urban green spaces is increasingly managed to help conserve biodiversity and improve human health concurrently. However, the effects of green space management on urban soil ecosystems is poorly understood, despite their importance. Across 40 urban green spaces in metropolitan Adelaide, South Australia, we show that soil bacterial communities are strongly affected by urban green space type (incl. sport fields, community gardens, parklands and revegetated areas), and that plant species richness is positively associated with soil bacterial diversity. Importantly, these microbiome trends were not affected by geographic proximity of sample sites. Our results provide early evidence that urban green space management can have predictable effects on the soil microbiome, at least from a diversity perspective, which could prove important to inform policy development if urban green spaces are to be managed to optimise population health benefits.


Assuntos
Parques Recreativos , Solo , Bactérias/genética , Biodiversidade , Humanos , Plantas , Microbiologia do Solo , Austrália do Sul
11.
Environ Res ; 187: 109641, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32447087

RESUMO

Painful conditions are among the leading causes of years lived with disability, and may increase following the coronavirus pandemic, which has led to temporary closure of some healthcare services for people with chronic pain. To reduce this burden, novel, cost-effective and accessible interventions are required. We propose that greenspace exposure may be one such intervention. Drawing on evidence from neuroscience, physiology, microbiology, and psychology, we articulate how and why exposure to greenspaces could improve pain outcomes and reduce the high global burden of pain. Greenspace exposure potentially provides opportunities to benefit from known or proposed health-enhancing components of nature, such as environmental microbiomes, phytoncides, negative air ions, sunlight, and the sights and sounds of nature itself. We review the established and potential links between these specific exposures and pain outcomes. While further research is required to determine possible causal links between greenspace exposure and pain outcomes, we suggest that there is already sufficient evidence to help reduce the global burden of pain by improving access and exposure to quality greenspaces.


Assuntos
Pessoas com Deficiência , Meio Ambiente , Dor , Humanos
12.
Biol Lett ; 15(10): 20190460, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31615374

RESUMO

Revegetation plantings are a key management tool for ecological restoration. Revegetation success is usually measured using ecological traits, however, genetic diversity should also be considered as it can influence fitness, adaptive capacity and long-term viability of revegetation plantings and ecosystem functioning. Here we review the global literature comparing genetic diversity in revegetation plantings to natural stands. Findings from 48 studies suggest variable genetic outcomes of revegetation, with 46% demonstrating higher genetic diversity in revegetation than natural stands and 52% demonstrating lower diversity. Levels of genetic diversity were most strongly associated with the number of source sites used-where information was available, 69% of studies showing higher genetic diversity in revegetation reported using multiple provenances, compared with only 33% for those with lower diversity. However, with a few exceptions, it was unclear whether differences in genetic diversity between revegetation and natural stands were statistically significant. This reflected insufficient reporting of statistical error and metadata within the published studies, which limited conclusions about factors contributing to patterns. Nonetheless, our findings indicate that mixed seed sourcing can contribute to higher genetic diversity in revegetation. Finally, we emphasize the type of metadata needed to determine factors influencing genetic diversity in revegetation and inform restoration efforts.


Assuntos
Ecossistema , Variação Genética , Conservação dos Recursos Naturais
13.
Mol Ecol ; 26(11): 2895-2904, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28261928

RESUMO

Ecological restoration is a globally important and well-financed management intervention used to combat biodiversity declines and land degradation. Most restoration aims to increase biodiversity towards a reference state, but there are concerns that intended outcomes are not reached due to unsuccessful interventions and land-use legacy issues. Monitoring biodiversity recovery is essential to measure success; however, most projects remain insufficiently monitored. Current field-based methods are hard to standardize and are limited in their ability to assess important components of ecosystems, such as bacteria. High-throughput amplicon sequencing of environmental DNA (metabarcoding of eDNA) has been proposed as a cost-effective, scalable and uniform ecological monitoring solution, but its application in restoration remains largely untested. Here we show that metabarcoding of soil eDNA is effective at demonstrating the return of the native bacterial community in an old field following native plant revegetation. Bacterial composition shifted significantly after 8 years of revegetation, where younger sites were more similar to cleared sites and older sites were more similar to remnant stands. Revegetation of the native plant community strongly impacted on the belowground bacterial community, despite the revegetated sites having a long and dramatically altered land-use history (i.e. >100 years grazing). We demonstrate that metabarcoding of eDNA provides an effective way of monitoring changes in bacterial communities that would otherwise go unchecked with conventional monitoring of restoration projects. With further development, awareness of microbial diversity in restoration has significant scope for improving the efficacy of restoration interventions more broadly.


Assuntos
Biodiversidade , Código de Barras de DNA Taxonômico , Microbiota , Plantas , Microbiologia do Solo , Ecossistema , Recuperação e Remediação Ambiental , Solo
15.
Mol Ecol ; 25(17): 4216-33, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27396238

RESUMO

Teasing apart neutral and adaptive genomic processes and identifying loci that are targets of selection can be difficult, particularly for nonmodel species that lack a reference genome. However, identifying such loci and the factors driving selection have the potential to greatly assist conservation and restoration practices, especially for the management of species in the face of contemporary and future climate change. Here, we focus on assessing adaptive genomic variation within a nonmodel plant species, the narrow-leaf hopbush (Dodonaea viscosa ssp. angustissima), commonly used for restoration in Australia. We used a hybrid-capture target enrichment approach to selectively sequence 970 genes across 17 populations along a latitudinal gradient from 30°S to 36°S. We analysed 8462 single-nucleotide polymorphisms (SNPs) for FST outliers as well as associations with environmental variables. Using three different methods, we found 55 SNPs with significant correlations to temperature and water availability, and 38 SNPs to elevation. Genes containing SNPs identified as under environmental selection were diverse, including aquaporin and abscisic acid genes, as well as genes with ontologies relating to responses to environmental stressors such as water deprivation and salt stress. Redundancy analysis demonstrated that only a small proportion of the total genetic variance was explained by environmental variables. We demonstrate that selection has led to clines in allele frequencies in a number of functional genes, including those linked to leaf shape and stomatal variation, which have been previously observed to vary along the sampled environmental cline. Using our approach, gene regions subject to environmental selection can be readily identified for nonmodel organisms.


Assuntos
Genética Populacional , Sapindaceae/genética , Seleção Genética , Austrália , Mudança Climática , Meio Ambiente , Genômica , Polimorfismo de Nucleotídeo Único
16.
Trends Microbiol ; 32(2): 107-110, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37953155

RESUMO

The microbiota-gut-brain axis facilitates communication between the gut microbiota and the brain. It has implications for health and environmental policy. Microbiota are linked to neurological and metabolic disorders, and our exposure to health-promoting microbiota depends on environmental quality. Microbiota-gut-brain axis interventions could inform policy initiatives to address systemic health issues.


Assuntos
Microbioma Gastrointestinal , Microbiota , Eixo Encéfalo-Intestino , Encéfalo
17.
Trends Biotechnol ; 42(8): 942-945, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38368168

RESUMO

Combining microbiome science and biointegrated design offers opportunities to help address the intertwined challenges of urban ecosystem degradation and human disease. Biointegrated materials have the potential to combat superbugs and remediate pollution while inoculating landscape materials with microbiota can promote human immunoregulation and biodiverse green infrastructure, contributing to 'probiotic cities'.


Assuntos
Cidades , Ecossistema , Microbiota , Probióticos , Humanos
18.
Curr Biol ; 34(9): R393-R398, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38714171

RESUMO

Soil health is crucial for all terrestrial life, supporting, among other processes, food production, water purification and carbon sequestration. Soil biodiversity - the variety of life within soils - is key to these processes and thus key to soil restoration. Human activities that degrade ecosystems threaten soil biodiversity and associated ecosystem processes. Indeed, 75% of the world's soils are affected by degradation - a figure that could rise to 90% by 2050 if deforestation, overgrazing, urbanisation and other harmful practices persist. Restoring soil biodiversity is a prerequisite for planetary health, and it comes with many challenges and opportunities. Soil directly supports around 60% of all species on Earth, and land degradation poses a major problem for this biodiversity and the ecosystem services that sustain human populations. Indeed, 98% of human calories come from soil, and earthworms alone underpin 6.5% of the world's grain production. Moreover, the total carbon in terrestrial ecosystems is around 3,170 gigatons (1 gigaton (Gt) = 1 billion metric tons), of which approximately 80% (2,500 Gt) is found in soil. Therefore, restoring soil biodiversity is not just a human need but an ecological and Earth-system imperative. It is pivotal for maintaining ecosystem resilience, sustaining agricultural productivity and mitigating climate change impacts.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Solo , Solo/química , Conservação dos Recursos Naturais/métodos , Ecossistema , Agricultura/métodos
19.
Trends Ecol Evol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38960756

RESUMO

Food webs are typically defined as being macro-organism-based (e.g., plants, mammals, birds) or microbial (e.g., bacteria, fungi, viruses). However, these characterizations have limits. We propose a multilayered food web conceptual model where microbial food webs are nested within food webs composed of macro-organisms. Nesting occurs through host-microbe interactions, which influence the health and behavior of host macro-organisms, such that host microbiomes likely alter population dynamics of interacting macro-organisms and vice versa. Here, we explore the theoretical underpinnings of multilayered food webs and the implications of this new conceptual model on food web ecology. Our framework opens avenues for new empirical investigations into complex ecological networks and provides a new lens through which to view a network's response to ecosystem changes.

20.
Sci Total Environ ; 927: 172158, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583619

RESUMO

Urban development has profoundly reduced human exposure to biodiverse environments, which is linked to a rise in human disease. The 'biodiversity hypothesis' proposes that contact with diverse microbial communities (microbiota) benefits human health, as exposure to microbial diversity promotes immune training and regulates immune function. Soils and sandpits in urban childcare centres may provide exposure to diverse microbiota that support immunoregulation at a critical developmental stage in a child's life. However, the influence of outdoor substrate (i.e., sand vs. soil) and surrounding vegetation on these environmental microbiota in urban childcare centres remains poorly understood. Here, we used 16S rRNA amplicon sequencing to examine the variation in bacterial communities in sandpits and soils across 22 childcare centres in Adelaide, Australia, plus the impact of plant species richness and habitat condition on these bacterial communities. We show that sandpits had distinct bacterial communities and lower alpha diversity than soils. In addition, we found that plant species richness in the centres' yards and habitat condition surrounding the centres influenced the bacterial communities in soils but not sandpits. These results demonstrate that the diversity and composition of childcare centre sandpit and soil bacterial communities are shaped by substrate type, and that the soils are also shaped by the vegetation within and surrounding the centres. Accordingly, there is potential to modulate the exposure of children to health-associated bacterial communities by managing substrates and vegetation in and around childcare centres.


Assuntos
Creches , Microbiota , Microbiologia do Solo , Humanos , Solo/química , Bactérias/classificação , RNA Ribossômico 16S , Plantas/microbiologia , Biodiversidade , Ecossistema , Criança , Austrália
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA