Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Curr Genet ; 65(2): 539-560, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30456648

RESUMO

The yeast Magnusiomyces capitatus is an opportunistic human pathogen causing rare yet severe infections, especially in patients with hematological malignancies. Here, we report the 20.2 megabase genome sequence of an environmental strain of this species as well as the genome sequences of eight additional isolates from human and animal sources providing an insight into intraspecies variation. The distribution of single-nucleotide variants is indicative of genetic recombination events, supporting evidence for sexual reproduction in this heterothallic yeast. Using RNAseq-aided annotation, we identified genes for 6518 proteins including several expanded families such as kexin proteases and Hsp70 molecular chaperones. Several of these families are potentially associated with the ability of M. capitatus to infect and colonize humans. For the purpose of comparative analysis, we also determined the genome sequence of a closely related yeast, Magnusiomyces ingens. The genome sequences of M. capitatus and M. ingens exhibit many distinct features and represent a basis for further comparative and functional studies.


Assuntos
Genoma Fúngico , Genômica , Micoses/microbiologia , Infecções Oportunistas/microbiologia , Saccharomycetales/genética , Antifúngicos/farmacologia , Biologia Computacional/métodos , Genômica/métodos , Humanos , Testes de Sensibilidade Microbiana , Anotação de Sequência Molecular , Família Multigênica , Fenótipo , Filogenia , Recombinação Genética , Saccharomycetales/classificação , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/patogenicidade , Fatores de Virulência
2.
Genetics ; 224(3)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37183478

RESUMO

One powerful strategy of how to increase the complexity of cellular proteomes is through posttranslational modifications (PTMs) of proteins. Currently, there are ∼400 types of PTMs, the different combinations of which yield a large variety of protein isoforms with distinct biochemical properties. Although mitochondrial proteins undergoing PTMs were identified nearly 6 decades ago, studies on the roles and extent of PTMs on mitochondrial functions lagged behind the other cellular compartments. The application of mass spectrometry for the characterization of the mitochondrial proteome as well as for the detection of various PTMs resulted in the identification of thousands of amino acid positions that can be modified by different chemical groups. However, the data on mitochondrial PTMs are scattered in several data sets, and the available databases do not contain a complete list of modified residues. To integrate information on PTMs of the mitochondrial proteome of the yeast Saccharomyces cerevisiae, we built the yeast mitochondrial posttranslational modification (y-mtPTM) database (http://compbio.fmph.uniba.sk/y-mtptm/). It lists nearly 20,000 positions on mitochondrial proteins affected by ∼20 various PTMs, with phosphorylated, succinylated, acetylated, and ubiquitylated sites being the most abundant. A simple search of a protein of interest reveals the modified amino acid residues, their position within the primary sequence as well as on its 3D structure, and links to the source reference(s). The database will serve yeast mitochondrial researchers as a comprehensive platform to investigate the functional significance of the PTMs of mitochondrial proteins.


Assuntos
Proteoma , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteoma/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Aminoácidos
3.
EBioMedicine ; 76: 103818, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35078012

RESUMO

BACKGROUND: The emergence of new SARS-CoV-2 variants of concern B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta) that harbor mutations in the viral S protein raised concern about activity of current vaccines and therapeutic antibodies. Independent studies have shown that mutant variants are partially or completely resistant against some of the therapeutic antibodies authorized for emergency use. METHODS: We employed hybridoma technology, ELISA-based and cell-based S-ACE2 interaction assays combined with authentic virus neutralization assays to develop second-generation antibodies, which were specifically selected for their ability to neutralize the new variants of SARS-CoV-2. FINDINGS: AX290 and AX677, two monoclonal antibodies with non-overlapping epitopes, exhibit subnanomolar or nanomolar affinities to the receptor binding domain of the viral Spike protein carrying amino acid substitutions N501Y, N439K, E484K, K417N, and a combination N501Y/E484K/K417N found in the circulating virus variants. The antibodies showed excellent neutralization of an authentic SARS-CoV-2 virus representing strains circulating in Europe in spring 2020 and also the variants of concern B.1.1.7 (Alpha), B.1.351 (Beta) and B.1.617.2 (Delta). In addition, AX677 is able to bind Omicron Spike protein just like the wild type Spike. The combination of the two antibodies prevented the appearance of escape mutations of the authentic SARS-CoV-2 virus. Prophylactic administration of AX290 and AX677, either individually or in combination, effectively reduced viral burden and inflammation in the lungs, and prevented disease in a mouse model of SARS-CoV-2 infection. INTERPRETATION: The virus-neutralizing properties were fully reproduced in chimeric mouse-human versions of the antibodies, which may represent a promising tool for COVID-19 therapy. FUNDING: The study was funded by AXON Neuroscience SE and AXON COVIDAX a.s.


Assuntos
Anticorpos Monoclonais/imunologia , Antineoplásicos Imunológicos/imunologia , Epitopos Imunodominantes/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Monoclonais/uso terapêutico , Deriva e Deslocamento Antigênicos , Antineoplásicos Imunológicos/uso terapêutico , COVID-19/virologia , Modelos Animais de Doenças , Humanos , Cinética , Pulmão/patologia , Camundongos , Mutação , Testes de Neutralização , Ligação Proteica , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA