Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 632(8027): 1021-1025, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39198670

RESUMO

Cold plasma of ionospheric origin has recently been found to be a much larger contributor to the magnetosphere of Earth than expected1-3. Numerous competing mechanisms have been postulated to drive ion escape to space, including heating and acceleration by wave-particle interactions4 and a global electrostatic field between the ionosphere and space (called the ambipolar or polarization field)5,6. Observations of heated O+ ions in the magnetosphere are consistent with resonant wave-particle interactions7. By contrast, observations of cold supersonic H+ flowing out of the polar ionosphere8,9 (called the polar wind) suggest the presence of an electrostatic field. Here we report the existence of a +0.55 ± 0.09 V electric potential drop between 250 km and 768 km from a planetary electrostatic field (E∥⊕ = 1.09 ± 0.17 µV m-1) generated exclusively by the outward pressure of ionospheric electrons. We experimentally demonstrate that the ambipolar field of Earth controls the structure of the polar ionosphere, boosting the scale height by 271%. We infer that this increases the supply of cold O+ ions to the magnetosphere by more than 3,800%, in which other mechanisms such as wave-particle interactions can heat and further accelerate them to escape velocity. The electrostatic field of Earth is strong enough by itself to drive the polar wind9,10 and is probably the origin of the cold H+ ion population1 that dominates much of the magnetosphere2,3.

2.
Space Weather ; 14(2): 151-164, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27398076

RESUMO

Using the Helium Oxygen Proton Electron (HOPE) and Electric Field and Waves (EFW) instruments from the Van Allen Probes, we explored the relationship between electron energy fluxes in the eV and keV ranges and spacecraft surface charging. We present statistical results on spacecraft charging within geosynchronous orbit by L and MLT. An algorithm to extract the H+ charging line in the HOPE instrument data was developed to better explore intense charging events. Also, this study explored how spacecraft potential relates to electron number density, electron pressure, electron temperature, thermal electron current, and low-energy ion density between 1 and 210 eV. It is demonstrated that it is imperative to use both EFW potential measurements and the HOPE instrument ion charging line for examining times of extreme spacecraft charging of the Van Allen Probes. The results of this study show that elevated electron energy fluxes and high-electron pressures are present during times of spacecraft charging but these same conditions may also occur during noncharging times. We also show noneclipse significant negative charging events on the Van Allen Probes.

3.
Geophys Res Lett ; 42(15): 6170-6179, 2015 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27656009

RESUMO

Substorms generally inject tens to hundreds of keV electrons, but intense substorm electric fields have been shown to inject MeV electrons as well. An intriguing question is whether such MeVelectron injections can populate the outer radiation belt. Here we present observations of a substorm injection of MeV electrons into the inner magnetosphere. In the premidnight sector at L ∼ 5.5, Van Allen Probes (Radiation Belt Storm Probes)-A observed a large dipolarization electric field (50 mV/m) over ∼40 s and a dispersionless injection of electrons up to ∼3 MeV. Pitch angle observations indicated betatron acceleration of MeV electrons at the dipolarization front. Corresponding signals of MeV electron injection were observed at LANL-GEO, THEMIS-D, and GOES at geosynchronous altitude. Through a series of dipolarizations, the injections increased the MeV electron phase space density by 1 order of magnitude in less than 3 h in the outer radiation belt (L > 4.8). Our observations provide evidence that deep injections can supply significant MeV electrons.

4.
Space Sci Rev ; 218(8): 66, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407497

RESUMO

The Van Allen Probes mission operations materialized through a distributed model in which operational responsibility was divided between the Mission Operations Center (MOC) and separate instrument specific SOCs. The sole MOC handled all aspects of telemetering and receiving tasks as well as certain scientifically relevant ancillary tasks. Each instrument science team developed individual instrument specific SOCs proficient in unique capabilities in support of science data acquisition, data processing, instrument performance, and tools for the instrument team scientists. In parallel activities, project scientists took on the task of providing a significant modeling tool base usable by the instrument science teams and the larger scientific community. With a mission as complex as Van Allen Probes, scientific inquiry occurred due to constant and significant collaboration between the SOCs and in concert with the project science team. Planned cross-instrument coordinated observations resulted in critical discoveries during the seven-year mission. Instrument cross-calibration activities elucidated a more seamless set of data products. Specific topics include post-launch changes and enhancements to the SOCs, discussion of coordination activities between the SOCs, SOC specific analysis software, modeling software provided by the Van Allen Probes project, and a section on lessons learned. One of the most significant lessons learned was the importance of the original decision to implement individual team SOCs providing timely and well-documented instrument data for the NASA Van Allen Probes Mission scientists and the larger magnetospheric and radiation belt scientific community.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA