RESUMO
An on-demand droplet injection method for controlled delivery of nanolitre-volume liquid samples to scientific instruments for subsequent analysis is presented. We employ pulsed focussed surface acoustic waves (SAW) to eject droplets from an enclosed microfluidic channel into an open environment. The 3D position of individual droplets and their time of arrival can be precisely controlled to within 61 µs in a 500 µm square target region 40 µm wide. The continuous ejection rate of 16 000 droplets per second can be tuned to produce pulsed trains of droplets from 0 up to 357 Hz. The main benefit of this technique is its ease of integration with complex microfluidic processing steps, such as droplet merging, sorting, and encapsulation, prior to sample delivery. With its ability to precisely deliver a small quantity of fluid to a pre-defined location this technology is applicable in X-ray based molecular studies, including the rapidly expanding field of X-ray free electron lasers. Fabrication procedures for this device, the underlying forcing mechanism, the role of nozzle design, and demonstration of the performance in both continuous and on-demand modes are reported.
RESUMO
Aqueous droplets suspended in an immiscible carrier fluid are a key tool in microfluidic chemical analysis platforms. The approaches for producing droplets in microfluidic devices can be divided into three general categories: batch emulsification, continuous production and tailored on-demand production. The major distinctions between each category are the rate of production and the degree of control over the droplet formation process in terms of the size and quantity. On-demand methods are highly desirable when, for example, small numbers or even single droplets of one sample type are required at a time. Here, we present a method for the on-demand production of femtolitre droplets, utilising a pressure source generated by high frequency surface acoustic waves (SAW). An increase in the continuous phase flow rate is enabled by a quasi-3D feature at the droplet production nozzle. A wide range of accessible flow rates permits the identification of different physical regimes in which droplets of different dimensions are produced. In the system investigated droplets measuring as little as 200 fl have been produced, â¼1/60th of the minimum volume previously reported. The experimental findings are supported by a numerical model which demonstrates the link between the number of droplets formed and the pulse length used.