Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Plant Cell Physiol ; 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37530742

RESUMO

In plant organelles, each C-to-U RNA editing site is specifically recognized by PLS class pentatricopeptide repeat (PPR) proteins with E1-E2, E1-E2-E+, or E1-E2-DYW domain extensions at the C-terminus. The distance between the PPR domain binding site and the RNA editing site is usually fixed at four bases, increasing the specificity of target site recognition in this system. We here report, in contrast to the general case, on MEF28, which edits two adjacent mitochondrial sites, nad2-89 and nad2-90. When the sDYW domain of MEF28 was replaced with one derived from MEF11 or CRR22, the ability to edit downstream sites was lost, suggesting that the DYW domain of MEF28 provides unique target flexibility for two continuous cytidines. By contrast, substitutions of the entire E1-E2-DYW domains by MEF19E1-E2, SLO2E1-E2-E+, or the CRR22E1-E2-E+ target both nad2 sites. In these cases, access to the contiguous sites in the chimeric PPR proteins is likely to be provided by the trans-associated DYW1-like proteins via the replaced E1-E2 or E1-E2-E+ domains. Furthermore, we demonstrated that the gating domain of MEF28 plays an important role in specific target site recognition of the DYW domain. This finding suggests that the DYW domain and its internal gating domain fine-tune the specificity of the target site, which is valuable information for designing specific synthetic RNA editing tools based on plant RNA editing factors.

2.
Annu Rev Genet ; 47: 335-52, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24274753

RESUMO

RNA editing alters the identity of nucleotides in RNA molecules such that the information for a protein in the mRNA differs from the prediction of the genomic DNA. In chloroplasts and mitochondria of flowering plants, RNA editing changes C nucleotides to U nucleotides; in ferns and mosses, it also changes U to C. The approximately 500 editing sites in mitochondria and 40 editing sites in plastids of flowering plants are individually addressed by specific proteins, genes for which are amplified in plant species with organellar RNA editing. These proteins contain repeat elements that bind to cognate RNA sequence motifs just 5' to the edited nucleotide. In flowering plants, the site-specific proteins interact selectively with individual members of a different, smaller family of proteins. These latter proteins may be connectors between the site-specific proteins and the as yet unknown deaminating enzymatic activity.


Assuntos
Plantas/genética , Edição de RNA , RNA de Plantas/genética , Proteínas de Arabidopsis/genética , Códon/genética , Evolução Molecular , Mitocôndrias/genética , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Plastídeos/genética , RNA Mensageiro/genética
3.
Plant Cell Physiol ; 61(6): 1080-1094, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32163154

RESUMO

The Arabidopsis genome encodes >450 proteins containing the pentatricopeptide repeat (PPR) motif. The PPR proteins are classified into two groups, termed as P and P Long-Short (PLS) classes. Typically, the PLS subclass proteins are mainly involved in the RNA editing of mitochondrial and chloroplast transcripts, whereas most of the analyzed P subclass proteins have been mainly implicated in RNA metabolism, such as 5' or 3' transcript stabilization and processing, splicing and translation. Mutations of PPR genes often result in embryogenesis and altered seedling developmental defect phenotypes, but only a limited number of ppr mutants have been characterized in detail. In this report, we show that null mutations in the EMB2794 gene result in embryo arrest, due to altered splicing of nad2 transcripts in the Arabidopsis mitochondria. In angiosperms, nad2 has five exons that are transcribed individually from two mitochondrial DNA regions. Biochemical and in vivo analyses further indicate that recombinant or transgenic EMB2794 proteins bind to the nad2 pre-mRNAs in vitro as well as in vivo, suggesting a role for this protein in trans-splicing of nad2 intron 2 and possibly in the stability of the second pre-mRNA of nad2. Homozygous emb2794 lines, showing embryo-defective phenotypes, can be partially rescued by the addition of sucrose to the growth medium. Mitochondria of rescued homozygous mutant plants contain only traces of respiratory complex I, which lack the NADH-dehydrogenase activity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Proteínas Mitocondriais/metabolismo , NADH Desidrogenase/metabolismo , RNA Mensageiro/metabolismo , Arabidopsis/enzimologia , Perfilação da Expressão Gênica , Potencial da Membrana Mitocondrial , Mutação , Reação em Cadeia da Polimerase em Tempo Real , Sementes/metabolismo , Transcriptoma
4.
Nucleic Acids Res ; 45(8): 4915-4928, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28201607

RESUMO

In flowering plant plastids and mitochondria, multiple organellar RNA editing factor (MORF/RIP) proteins are required at most sites for efficient C to U RNA editing catalyzed by the RNA editosome. MORF proteins harbor a conserved stretch of residues (MORF-box), form homo- and heteromers and interact with selected PPR (pentatricopeptide repeat) proteins, which recognize each editing site. The molecular function of the MORF-box remains elusive since it shares no sequence similarity with known domains. We determined structures of the A. thaliana mitochondrial MORF1 and chloroplast MORF9 MORF-boxes which both adopt a novel globular fold (MORF domain). Our structures state a paradigmatic model for MORF domains and their specific dimerization via a hydrophobic interface. We cross-validate the interface by yeast two-hybrid studies and pulldown assays employing structure-based mutants. We find a structural similarity of the MORF domain to an N-terminal ferredoxin-like domain (NFLD), which confers RNA substrate positioning in bacterial 4-thio-uracil tRNA synthetases, implying direct RNA contacts of MORF proteins during RNA editing. With the MORF1 and MORF9 structures we elucidate a yet unknown fold, corroborate MORF interaction studies, validate the mechanism of MORF multimerization by structure-based mutants and pave the way towards a complete structural characterization of the plant RNA editosome.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Domínios Proteicos/genética , Proteínas com Motivo de Reconhecimento de RNA/química , Proteínas de Ligação a RNA/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/química , Cristalografia por Raios X , Mitocôndrias/química , Dados de Sequência Molecular , Dobramento de Proteína , Estrutura Terciária de Proteína , Edição de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/genética
5.
Plant Cell Physiol ; 59(2): 355-365, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29216369

RESUMO

Pentatricopeptide repeat (PPR) proteins constitute the largest family of proteins in angiosperms, and most members are predicted to play roles in the maturation of organellar RNAs. Here we describe the novel mitochondrial editing factor 31 (MEF31), an E-PPR protein involved in editing at two close sites in the same transcript encoding subunit C of the twin-arginine translocation (tat) pathway. MEF31 is essential for editing at site tatC-581 and application of the recently proposed amino acid code for RNA recognition by PPR proteins supports the view that MEF31 directly targets this site by recognizing its cis sequence. In contrast, editing at site tatC-586 five nucleotides downstream is only partially affected in plants lacking MEF31, being restored to wild-type levels in complemented plants. Application of the amino acid code and analysis of individual RNA molecules for editing at sites 581 and 586 suggest that MEF31 does not directly target site tatC-586, and only indirectly influences editing at this site. It is likely that editing at site tatC-581 improves recognition of the site tatC-586 cis sequence by a second unknown PPR protein.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Cloroplastos/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Edição de RNA/genética , Proteínas de Ligação a RNA/genética , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Proteínas de Cloroplastos/química , Proteínas de Cloroplastos/metabolismo , Sequência Conservada/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Modelos Biológicos , Mutação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Plântula/genética
6.
J Biol Chem ; 290(10): 6445-56, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25583991

RESUMO

RNA editing in plastids and mitochondria of flowering plants requires pentatricopeptide repeat proteins (PPR proteins) for site recognition and proteins of the multiple organellar RNA editing factor (MORF) family as cofactors. Two MORF proteins, MORF5 and MORF8, are dual-targeted to plastids and mitochondria; two are targeted to plastids, and five are targeted to mitochondria. Pulldown assays from Arabidopsis thaliana tissue culture extracts with the mitochondrial MORF1 and the plastid MORF2 proteins, respectively, both identify the dual-targeted MORF8 protein, showing that these complexes can assemble in the organelles. We have now determined the scope of potential interactions between the various MORF proteins by yeast two-hybrid, in vitro pulldown, and bimolecular fluorescence complementation assays. The resulting MORF-MORF interactome identifies specific heteromeric MORF protein interactions in plastids and in mitochondria. Heteromers are observed for MORF protein combinations affecting a common site, suggesting their functional relevance. Most MORF proteins also undergo homomeric interactions. Submolecular analysis of the MORF1 protein reveals that the MORF-MORF protein connections require the C-terminal region of the central conserved MORF box. This domain has no similarity to known protein modules and may form a novel surface for protein-protein interactions.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Mapas de Interação de Proteínas , Estrutura Terciária de Proteína , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Mitocôndrias/química , Mitocôndrias/genética , Mitocôndrias/metabolismo , Plastídeos/química , Plastídeos/genética , Plastídeos/metabolismo , Ligação Proteica , Multimerização Proteica , Edição de RNA/genética
7.
Proc Natl Acad Sci U S A ; 109(13): 5104-9, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22411807

RESUMO

RNA editing in plastids and mitochondria of flowering plants changes hundreds of selected cytidines to uridines, mostly in coding regions of mRNAs. Specific sequences around the editing sites are presumably recognized by up to 200 pentatricopeptide repeat (PPR) proteins. The here identified family of multiple organellar RNA editing factor (MORF) proteins provides additional components of the RNA editing machinery in both plant organelles. Two MORF proteins are required for editing in plastids; at least two are essential for editing in mitochondria. The loss of a MORF protein abolishes or lowers editing at multiple sites, many of which are addressed individually by PPR proteins. In plastids, both MORF proteins are required for complete editing at almost all sites, suggesting a heterodimeric complex. In yeast two-hybrid and pull-down assays, MORF proteins can connect to form hetero- and homodimers. Furthermore, MORF proteins interact selectively with PPR proteins, establishing a more complex editosome in plant organelles than previously thought.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Mitocôndrias/genética , Família Multigênica , Plastídeos/genética , Edição de RNA/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sequência de Bases , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica , Pseudogenes/genética , Sequências Repetitivas de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
8.
J Biol Chem ; 287(45): 38064-72, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22977245

RESUMO

The facilitators for specific cytosine-to-uridine RNA-editing events in plant mitochondria and plastids are pentatricopeptide repeat (PPR)-containing proteins with specific additional C-terminal domains. Here we report the related PPR proteins mitochondrial editing factor 8 (MEF8) and MEF8S with only five such repeats each to be both involved in RNA editing at the same two sites in mitochondria of Arabidopsis thaliana. Mutants of MEF8 show diminished editing in leaves but not in pollen, whereas mutants of the related protein MEF8S show reduced RNA editing in pollen but not in leaves. Overexpressed MEF8 or MEF8S both increase editing at the two target sites in a mef8 mutant. Double mutants of MEF8 and MEF8S are not viable although both identified target sites are in mRNAs for nonessential proteins. This suggests that MEF8 and MEF8S may have other essential functions beyond these two editing sites in complex I mRNAs.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Edição de RNA , RNA de Plantas/genética , RNA/genética , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Sítios de Ligação/genética , DNA Bacteriano/genética , Genes Letais/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Mutagênese Insercional , Mutação , Folhas de Planta/genética , Folhas de Planta/metabolismo , Pólen/genética , Pólen/metabolismo , RNA/metabolismo , RNA Mitocondrial , RNA de Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
9.
Plant J ; 71(5): 836-49, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22540321

RESUMO

Pentatricopeptide repeat (PPR) proteins belong to a family of approximately 450 members in Arabidopsis, of which few have been characterized. We identified loss of function alleles of SLO2, defective in a PPR protein belonging to the E+ subclass of the P-L-S subfamily. slo2 mutants are characterized by retarded leaf emergence, restricted root growth, and late flowering. This phenotype is enhanced in the absence of sucrose, suggesting a defect in energy metabolism. The slo2 growth retardation phenotypes are largely suppressed by supplying sugars or increasing light dosage or the concentration of CO2. The SLO2 protein is localized in mitochondria. We identified four RNA editing defects and reduced editing at three sites in slo2 mutants. The resulting amino acid changes occur in four mitochondrial proteins belonging to complex I of the electron transport chain. Both the abundance and activity of complex I are highly reduced in the slo2 mutants, as well as the abundance of complexes III and IV. Moreover, ATP, NAD+, and sugar contents were much lower in the mutants. In contrast, the abundance of alternative oxidase was significantly enhanced. We propose that SLO2 is required for carbon energy balance in Arabidopsis by maintaining the abundance and/or activity of complexes I, III, and IV of the mitochondrial electron transport chain.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético , Proteínas Mitocondriais/metabolismo , Edição de RNA , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clonagem Molecular , Complexo I de Transporte de Elétrons/genética , Regulação da Expressão Gênica de Plantas , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , NAD/metabolismo , Fenótipo , Sacarose/metabolismo
10.
Plant Mol Biol ; 81(4-5): 337-46, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23288601

RESUMO

A forwards genetic screen of a chemically mutated plant population identified mitochondrial RNA editing factor 10 (MEF10) in Arabidopsis thaliana. MEF10 is a trans-factor required specifically for the C to U editing of site nad2-842. The MEF10 protein is characterized by a stretch of pentatricopeptide repeats (PPR) and a C-terminal extension domain ending with the amino acids DYW. Editing is lost in mutant plants but is recovered by transgenic introduction of an intact MEF10 gene. The MEF10 protein interacts with multiple organellar RNA editing factor 8 (MORF8) but not with other mitochondrial MORF proteins in yeast two hybrid assays. These results support the model that specific combinations of MORF and MEF proteins are involved in RNA editing in plant mitochondria.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Edição de RNA/genética , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sequência de Bases , Sequência Conservada , Ecótipo , Metanossulfonato de Etila , Genes de Plantas/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Ligação Proteica/genética , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido , Uridina/metabolismo
11.
J Biol Chem ; 286(24): 21361-71, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21504904

RESUMO

In plant organelles, RNA editing is a post-transcriptional mechanism that converts specific cytidines to uridines in RNA of both mitochondria and plastids, altering the information encoded by the gene. The cytidine to be edited is determined by a cis-element surrounding the editing site that is specifically recognized and bound by a trans-acting factor. All the trans-acting editing factors identified so far in plant organelles are members of a large protein family, the pentatricopeptide repeat (PPR) proteins. We have identified the Organelle Transcript Processing 87 (OTP87) gene, which is required for RNA editing of the nad7-C24 and atp1-C1178 sites in Arabidopsis mitochondria. OTP87 encodes an E-subclass PPR protein with an unusually short E-domain. The recombinant protein expressed in Escherichia coli specifically binds to RNAs comprising 30 nucleotides upstream and 10 nucleotides downstream of the nad7-C24 and atp1-C1178 editing sites. The loss-of-function of OTP87 results in small plants with growth and developmental delays. In the otp87 mutant, the amount of assembled respiratory complex V (ATP synthase) is highly reduced compared with the wild type suggesting that the amino acid alteration in ATP1 caused by loss of editing at the atp1-C1178 site affects complex V assembly in mitochondria.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Mitocôndrias/metabolismo , NADH Desidrogenase/química , Peptídeos/química , Proteínas de Plantas/metabolismo , ATPases Translocadoras de Prótons/química , Edição de RNA , Proteínas de Ligação a RNA/fisiologia , Sítios de Ligação , Clorofila/metabolismo , Escherichia coli/metabolismo , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Modelos Genéticos , Mutação , Fenótipo , Estrutura Terciária de Proteína
12.
RNA Biol ; 9(2): 155-61, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22258224

RESUMO

In plant mitochondria and plastids, RNA editing alters about 400 and about 35 C nucleotides into Us, respectively. Four of these RNA editing events in plant mitochondria specifically require the PPR protein MEF7, characterized by E and DYW extension domains. The gene for MEF7 was identified by genomic mapping of the locus mutated in plants from EMS treated seeds. The SNaPshot screen of the mutant plant population identified two independent EMS mutants with the same editing defects as a corresponding T-DNA insertion line of the MEF7 gene. Although the amino acid codons introduced by the editing events are conserved throughout flowering plants, even the combined failure of four editing events does not impair the growth efficiency of the mutant plants. Five nucleotides are conserved between the four affected editing sites, but are not sufficient for specific recognition by MEF7 since they are also present at three other sites which are unaffected in the mutants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Mitocôndrias/metabolismo , Edição de RNA , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sequência de Bases , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Mitocôndrias/genética , Dados de Sequência Molecular , Mutação , Fenótipo , Proteínas de Ligação a RNA/genética , Alinhamento de Sequência
13.
J Biol Chem ; 285(35): 27122-27129, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20566637

RESUMO

RNA editing in flowering plant mitochondria post-transcriptionally alters several hundred nucleotides from C to U, mostly in mRNAs. Several factors required for specific RNA-editing events in plant mitochondria and plastids have been identified, all of them PPR proteins of the PLS subclass with a C-terminal E-domain and about half also with an additional DYW domain. Based on this information, we here probe the connection between E-PPR proteins and RNA editing in plant mitochondria. We initiated a reverse genetics screen of T-DNA insertion lines in Arabidopsis thaliana and investigated 58 of the 150 E-PPR-coding genes for a function in RNA editing. Six genes were identified to be involved in mitochondrial RNA editing at specific sites. Homozygous mutants of the five genes MEF18-MEF22 display no gross disturbance in their growth or development patterns, suggesting that the editing sites affected are not crucial at least in the greenhouse. These results show that a considerable percentage of the E-PPR proteins are involved in the functional processing of site-specific RNA editing in plant mitochondria.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Edição de RNA/fisiologia , RNA de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , DNA de Plantas/genética , DNA de Plantas/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Mutação , Estrutura Terciária de Proteína , RNA de Plantas/genética
14.
Plant J ; 61(3): 446-55, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19919573

RESUMO

Post-transcriptional RNA editing in flowering plant mitochondria alters several hundred nucleotides from cytidine to uridine, mostly in mRNAs. To characterize the factors involved in RNA editing in plant mitochondria, we initiated a screen for nuclear mutants defective in RNA editing at specific sites. Here we identify the nuclear-encoded gene MEF11, which is involved in RNA editing of the three sites cox3-422, nad4-124 and ccb203-344 in Arabidopsis thaliana. A T-DNA insertion line of this gene was previously characterized as showing enhanced tolerance to the compound lovastatin, an inhibitor of the mevalonate pathway of isoprenoid biosynthesis. The mef11-1 mutant described here shows similar tolerance to lovastatin. Identification of the function of the MEF11 protein in site-specific mitochondrial RNA editing suggests indirect effects of retrograde signalling from mitochondria to the cytoplasm to evoke alteration of the mevalonate pathway. The editing sites cox3-422 and ccb203-344 each alter amino acids that are conserved in the respective proteins, while the nad4-124 site is silent. The single amino acid change in the mef11-1 mutant occurs in the second pentatricopeptide repeat, suggesting that this motif is required for site-specific RNA editing.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Mitocôndrias/metabolismo , Edição de RNA , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sequência de Bases , Sequência Conservada , DNA Bacteriano/genética , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Mutação , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Alinhamento de Sequência
15.
Plant J ; 61(4): 558-69, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19929881

RESUMO

S-adenosyl-L-methionine-dependent rRNA dimethylases mediate the methylation of two conserved adenosines near the 3' end of the rRNA in the small ribosomal subunits of bacteria, archaea and eukaryotes. Proteins related to this family of dimethylases play an essential role as transcription factors (mtTFBs) in fungal and animal mitochondria. Human mitochondrial rRNA is methylated and human mitochondria contain two related mtTFBs, one proposed to act as rRNA dimethylase, the other as transcription factor. The nuclear genome of Arabidopsis thaliana encodes three dimethylase/mtTFB-like proteins, one of which, Dim1B, is shown here to be imported into mitochondria. Transcription initiation by mitochondrial RNA polymerases appears not to be stimulated by Dim1B in vitro. In line with this finding, phylogenetic analyses revealed Dim1B to be more closely related to a group of eukaryotic non-mitochondrial rRNA dimethylases (Dim1s) than to fungal and animal mtTFBs. We found that Dim1B was capable of substituting the E. coli rRNA dimethylase activity of KsgA. Moreover, we observed methylation of the conserved adenines in the 18S rRNA of Arabidopsis mitochondria; this modification was not detectable in a mutant lacking Dim1B. These data provide evidence: (i) for rRNA methylation in Arabidopsis mitochondria; and (ii) that Dim1B is the enzyme catalyzing this process.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Metiltransferases/metabolismo , Mitocôndrias/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Teste de Complementação Genética , Metiltransferases/genética , Mitocôndrias/genética , Mutagênese Insercional , Mutação , Filogenia , RNA de Plantas/genética , RNA Ribossômico 18S/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
16.
RNA Biol ; 8(1): 67-70, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21289490

RESUMO

RNA editing in flowering plant mitochondria targets several hundred C nucleotides mostly in mRNAs to be altered to U. Several nuclear encoded genes have been recently identified predominantly in Arabidopsis thaliana which code for proteins involved in specific RNA editing events in plastids or mitochondria. These nuclear genes code for proteins characterized by a stretch of 4-20 repeats of 34-36 amino acids each, accordingly classified as pentatricopeptide repeat (PPR) proteins. These repeats most likely participate in recognizing and binding the specific nucleotide motifs around editing sites which have been defined as essential cis-elements. All of the RNA editing PPR proteins contain at their C-termini an extension of as yet unclear function, the E domain, and some of these are further extended by another domain which terminates with the triplet DYW. While the E domain seems to be always required for their function in RNA editing, the DYW domain can sometimes be removed. At some editing sites a given PPR protein seems to be required, while at others their function can at least partially be compensated by presumably other PPR proteins. These observations suggest that the PPR proteins may act in a complex network to define and to target RNA editing sites.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Edição de RNA , RNA Mensageiro/metabolismo , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Domínio Catalítico , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mutagênese Insercional , Protoplastos/metabolismo , RNA/genética , RNA/metabolismo , RNA Mitocondrial , RNA de Plantas/metabolismo , Proteínas de Ligação a RNA/metabolismo
17.
Nucleic Acids Res ; 37(2): e13, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19059998

RESUMO

We developed a multiplex single-base extension single-nucleotide polymorphism-typing procedure for screening large numbers of plants for mutations in mitochondrial RNA editing. The high sensitivity of the approach detects changes in the RNA editing status generated in total cellular cDNA from pooled RNA preparations of up to 50 green plants. The method has been employed to tag several nuclear encoded genes required for RNA editing at specific sites in mitochondria of Arabidopsis thaliana. This approach will allow large-scale screening for mutations in genes encoding trans-factors for many types of RNA editing as well as for other RNA modifications.


Assuntos
Arabidopsis/genética , Núcleo Celular/genética , Mitocôndrias/genética , Polimorfismo de Nucleotídeo Único , Edição de RNA , Análise de Sequência de DNA/métodos , DNA Complementar/química , Mutagênese , Mutação
18.
IUBMB Life ; 61(12): 1105-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19946893

RESUMO

It took several independent observations of C-to-T differences between genomic mtDNA sequences and corresponding complementary DNA (cDNA) sequences before RNA editing in plant mitochondria was accepted as a fact by the group at Tübingen and later Berlin (Hiesel et al., Science246 (1989) 1632-1634). The first such deviating sequence runs were critically viewed in the lab as being errors of some kind, most likely cloning artifacts, which occur only too frequently. Several such cDNA-mtDNA differences identified in independent cDNA clones in different libraries and finally CGG to TGG codon changes dispelled the skeptical view, and this phenomenon was finally recognized as plant mitochondrial RNA editing of a type similar to the apolipoprotein B RNA editing in mammals.


Assuntos
DNA Complementar/metabolismo , DNA Mitocondrial/genética , Mitocôndrias/metabolismo , Plantas/metabolismo , Edição de RNA , Bioquímica/história , Bioquímica/métodos , Alemanha , História do Século XX , Reprodutibilidade dos Testes
19.
Nucleic Acids Res ; 35(Database issue): D173-7, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17175530

RESUMO

The RNA Editing Database (REDIdb) is an interactive, web-based database created and designed with the aim to allocate RNA editing events such as substitutions, insertions and deletions occurring in a wide range of organisms. The database contains both fully and partially sequenced DNA molecules for which editing information is available either by experimental inspection (in vitro) or by computational detection (in silico). Each record of REDIdb is organized in a specific flat-file containing a description of the main characteristics of the entry, a feature table with the editing events and related details and a sequence zone with both the genomic sequence and the corresponding edited transcript. REDIdb is a relational database in which the browsing and identification of editing sites has been simplified by means of two facilities to either graphically display genomic or cDNA sequences or to show the corresponding alignment. In both cases, all editing sites are highlighted in colour and their relative positions are detailed by mousing over. New editing positions can be directly submitted to REDIdb after a user-specific registration to obtain authorized secure access. This first version of REDIdb database stores 9964 editing events and can be freely queried at http://biologia.unical.it/py_script/search.html.


Assuntos
Bases de Dados de Ácidos Nucleicos , Edição de RNA , DNA Complementar/química , Internet , RNA Mensageiro/química , Análise de Sequência de DNA , Interface Usuário-Computador
20.
Mitochondrion ; 8(1): 35-46, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18326075

RESUMO

RNA editing changes more than 400 cytidines to uridines in the mRNAs of mitochondria in flowering plants. In other plants such as ferns and mosses, RNA editing reactions changing C to U and U to C are observed at almost equal frequencies. Development of transfection systems with isolated mitochondria and of in vitro systems with extracts from mitochondria has considerably improved our understanding of the recognition of specific editing sites in the last few years. These assays have also yielded information about the biochemical parameters, but the enzymes involved have not yet been identified. Here we summarize our present understanding of the process of RNA editing in flowering plant mitochondria.


Assuntos
Regulação da Expressão Gênica de Plantas , Mitocôndrias/genética , Plantas/genética , Edição de RNA/fisiologia , Brassica/genética , Carbono-Nitrogênio Ligases/fisiologia , Citidina Desaminase/fisiologia , Desaminação , Evolução Molecular , Genoma Mitocondrial/fisiologia , Genoma de Planta/fisiologia , Pisum sativum/genética , RNA Helicases/fisiologia , Transaminases/fisiologia , Triticum/genética , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA