RESUMO
Metallic zinc has emerged as a promising anode material for high-energy battery systems due to its high theoretical capacity (820 mA h g-1), low redox potential for two-electron reactions, cost-effectiveness and inherent safety. However, current zinc metal batteries face challenges in low coulombic efficiency and limited longevity due to uncontrollable dendrite growth, the corrosive hydrogen evolution reaction (HER) and decomposition of the aqueous ZnSO4 electrolyte. Here, we report an interfacial-engineering approach to mitigate dendrite growth and reduce corrosive reactions through the design of ultrathin selective membranes coated on the zinc anodes. The submicron-thick membranes derived from polymers of intrinsic microporosity (PIMs), featuring pores with tunable interconnectivity, facilitate regulated transport of Zn2+-ions, thereby promoting a uniform plating/stripping process. Benefiting from the protection by PIM membranes, zinc symmetric cells deliver a stable cycling performance over 1500 h at 1 mA/cm² with a capacity of 0.5 mAh while full cells with NaMnO2 cathode operate stably at 1 A g-1 over 300 cycles without capacity decay. Our work represents a new strategy of preparing multi-functional membranes that can advance the development of safe and stable zinc metal batteries.
RESUMO
Electrocatalytic oxygen reduction reaction (ORR) has been intensively studied for environmentally benign applications. However, insufficient understanding of ORR 2 e- -pathway mechanism at the atomic level inhibits rational design of catalysts with both high activity and selectivity, causing concerns including catalyst degradation due to Fenton reaction or poor efficiency of H2 O2 electrosynthesis. Herein we show that the generally accepted ORR electrocatalyst design based on a Sabatier volcano plot argument optimises activity but is unable to account for the 2 e- -pathway selectivity. Through electrochemical and operando spectroscopic studies on a series of CoNx /carbon nanotube hybrids, a construction-driven approach based on an extended "dynamic active site saturation" model that aims to create the maximum number of 2 e- ORR sites by directing the secondary ORR electron transfer towards the 2 e- intermediate is proven to be attainable by manipulating O2 hydrogenation kinetics.
RESUMO
For zinc-ion batteries (ZIBs), the non-uniform Zn plating/stripping results in a high polarization and low Coulombic efficiency (CE), hindering the large-scale application of ZIBs. Here, inspired by biomass seaweed plants, an anionic polyelectrolyte alginate acid (SA) was used to initiate the in situ formation of the high-performance solid electrolyte interphase (SEI) layer on the Zn anode. Attribute to the anionic groups of -COO- , the affinity of Zn2+ ions to alginate acid induces a well-aligned accelerating channel for uniform plating. This SEI regulates the desolvation structure of Zn2+ and facilitates the formation of compact Zn (002) crystal planes. Even under high depth of discharge conditions (DOD), the SA-coated Zn anode still maintains a stable Zn stripping/plating behavior with a low potential difference (0.114â V). According to the classical nucleation theory, the nucleation energy for SA-coated Zn is 97 % less than that of bare Zn, resulting in a faster nucleation rate. The Zn||Cu cell assembled with the SA-coated electrode exhibits an outstanding average CE of 99.8 % over 1,400 cycles. The design is successfully demonstrated in pouch cells, where the SA-coated Zn exhibits capacity retention of 96.9 % compared to 59.1 % for bare Zn anode, even under the high cathode mass loading (>10â mg/cm2 ).
RESUMO
Routine electrolyte additives are not effective enough for uniform zinc (Zn) deposition, because they are hard to proactively guide atomic-level Zn deposition. Here, based on underpotential deposition (UPD), we propose an "escort effect" of electrolyte additives for uniform Zn deposition at the atomic level. With nickel ion (Ni2+ ) additives, we found that metallic Ni deposits preferentially and triggers the UPD of Zn on Ni. This facilitates firm nucleation and uniform growth of Zn while suppressing side reactions. Besides, Ni dissolves back into the electrolyte after Zn stripping with no influence on interfacial charge transfer resistance. Consequently, the optimized cell operates for over 900â h at 1â mA cm-2 (more than 4 times longer than the blank one). Moreover, the universality of "escort effect" is identified by using Cr3+ and Co2+ additives. This work would inspire a wide range of atomic-level principles by controlling interfacial electrochemistry for various metal batteries.
RESUMO
The electrochemical synthesis of hydrogen peroxide (H2 O2 ) via a two-electron (2 e- ) oxygen reduction reaction (ORR) process provides a promising alternative to replace the energy-intensive anthraquinone process. Herein, we develop a facile template-protected strategy to synthesize a highly active quinone-rich porous carbon catalyst for H2 O2 electrochemical production. The optimized PCC900 material exhibits remarkable activity and selectivity, of which the onset potential reaches 0.83â V vs. reversible hydrogen electrode in 0.1â M KOH and the H2 O2 selectivity is over 95 % in a wide potential range. Comprehensive synchrotron-based near-edge X-ray absorption fine structure (NEXAFS) spectroscopy combined with electrocatalytic characterizations reveals the positive correlation between quinone content and 2 e- ORR performance. The effectiveness of chair-form quinone groups as the most efficient active sites is highlighted by the molecule-mimic strategy and theoretical analysis.
RESUMO
As the drive to improve the cost, performance characteristics and safety of lithium-ion batteries increases with adoption, one area where significant value could be added is that of battery diagnostics. This paper documents an investigation into the use of plasmonic-based optical fibre sensors, inserted internally into 1.4 Ah lithium-ion pouch cells, as a real time and in-situ diagnostic technique. The successful implementation of the fibres inside pouch cells is detailed and promising correlation with battery state is reported, while having negligible impact on cell performance in terms of capacity and columbic efficiency. The testing carried out includes standard cycling and galvanostatic intermittent titration technique (GITT) tests, and the use of a reference electrode to correlate with the anode and cathode readings separately. Further observations are made around the sensor and analyte interaction mechanisms, robustness of sensors and suggested further developments. These finding show that a plasmonic-based optical fibre sensor may have potential as an opto-electrochemical diagnostic technique for lithium-ion batteries, offering an unprecedented view into internal cell phenomena.
Assuntos
Lítio , Fibras Ópticas , Fontes de Energia Elétrica , Eletrodos , ÍonsRESUMO
NiS1.23 Se0.77 nanosheets closely attached to the internal surface of hollow mesoporous carbon sphere (HMCS) to form a NiS1.23 Se0.77 nanosheets embedded in HMCS (NSSNs@HMCS) composite as the anode of sodium ion batteries (SIBs) is reported by a facile synthesis route. The anode exhibits a superior reversible capacity (520 mAh g-1 at 0.1 A g-1 ), impressive coulombic efficiency (CE) of up to 95.3%, a high rate capacity (353 mAh g-1 at 5.0 A g-1 ), excellent capacity retention at high current density (95.6%), and high initial coulombic efficiency (ICE) (95.1%). Firstly, the highest ICE for NiS2 /NiSe2 -based anode can be ascribed to ultrathin layered structure of NiS1.23 Se0.77 nanosheet and highly efficient electron transfer between the active material and HMCS. Secondly, the optimized NiS2 /NiSe2 heterostructure at the nanoscale of the inside HMCS is formed after the first discharge/charge cycles, which can provide rich heterojunction interfaces/boundaries of sulfide/selenides to offer faster Na+ pathways, decrease the Na+ diffusion barriers, increase electronic conductivity, and limit the dissolution of polysulfides or polyselenides in the electrolyte. Finally, the hollow structure of the HMCS accommodates the volume expansion, prevents the pulverization and aggregation issues of composite materials, which can also promote outstanding electrochemical performance.
RESUMO
Polypyrrole (PPy) has high electrochemical activity and low cost, so it has great application prospects in wearable supercapacitors. Herein, we have successfully prepared polypyrrole/reduced graphene oxide (PPy/rGO) nanocomposite cotton fabric (NCF) by chemical polymerization, which exhibits splendid electrochemical performance compared with the individual. The addition of rGO can block the deformation of PPy caused by the expansion and contraction. The as-prepared PPy-0.5/rGO NCF electrode exhibits the brilliant specific capacitance (9300 mF cm-2at 1 mA cm-2) and the capacitance retention with 94.47% after 10 000 cycles. At the same time, the superior capacitance stability under different bending conditions and reuse capability have been achieved. All-solid-state supercapacitor has high energy density of 167µWh cm-2with a power density of 1.20 mW cm-2. Therefore, the PPy-0.5/rGO NCF electrode has a broad application prospect in high-performance flexible supercapacitor fabric electrode.
RESUMO
Heteroatom-doped carbon materials with a high specific area, a well-defined porous structure is important to high-performance supercapacitors (SCs). Here, S and N co-doped three-dimensional porous graphene aerogel (NS-3DPGHs) have been synthesized in a facile and efficient self-assembly process with thiourea acting as the reducing and doping agent solution. Operating as a SC electrode, fabricated co-doping graphene, i.e. the sample of NS-3DPGH-150 exhibits the highest specific capacitance of 412.9 F g-1 under 0.5 A g-1 and prominent cycle stabilization with 96.4% capacitance retention in the back of 10 000 cycles. Furthermore, based on NS-3DPGH-150, the symmetrical supercapacitor as-prepared in 6 M KOH displays a superior energy density of 12.9 Wh kg-1 under the power density of 249 W kg-1. Hence, NS-3DPGHs could be considered as an excellent candidate for SCs.
RESUMO
Understanding the surface structure of bimetallic nanoparticles is crucial for heterogeneous catalysis. Although surface contraction has been established in monometallic systems, less is known for bimetallic systems, especially of nanoparticles. In this work, the bond length contraction on the surface of bimetallic nanoparticles is revealed by XAS in H2 at room temperature on dealloyed Pt-Sn nanoparticles, where most Sn atoms were oxidized and segregated to the surface when measured in air. The average Sn-Pt bond length is found to be â¼0.09 Å shorter than observed in the bulk. To ascertain the effect of the Sn location on the decrease of the average bond length, Pt-Sn samples with lower surface-to-bulk Sn ratios than the dealloyed Pt-Sn were studied. The structural information specifically from the surface was extracted from the averaged XAS results using an improved fitting model combining the data measured in H2 and in air. Two samples prepared so as to ensure the absence of Sn in the bulk were also studied in the same fashion. The bond length of surface Sn-Pt and the corresponding coordination number obtained in this study show a nearly linear correlation, the origin of which is discussed and attributed to the poor overlap between the Sn 5p orbitals and the available orbitals of the Pt surface atoms.
RESUMO
This study presents the application of X-ray diffraction computed tomography for the first time to analyze the crystal dimensions of LiNi0.33Mn0.33Co0.33O2 electrodes cycled to 4.2 and 4.7 V in full cells with graphite as negative electrodes at 1 µm spatial resolution to determine the change in unit cell dimensions as a result of electrochemical cycling. The nature of the technique permits the spatial localization of the diffraction information in 3D and mapping of heterogeneities from the electrode to the particle level. An overall decrease of 0.4% and 0.6% was observed for the unit cell volume after 100 cycles for the electrodes cycled to 4.2 and 4.7 V. Additionally, focused ion beam-scanning electron microscope cross-sections indicate extensive particle cracking as a function of upper cut-off voltage, further confirming that severe cycling stresses exacerbate degradation. Finally, the technique facilitates the detection of parts of the electrode that have inhomogeneous lattice parameters that deviate from the bulk of the sample, further highlighting the effectiveness of the technique as a diagnostic tool, bridging the gap between crystal structure and electrochemical performance.
RESUMO
Optimizing the chemical and morphological parameters of lithium-ion (Li-ion) electrodes is extremely challenging, due in part to the absence of techniques to construct spatial and temporal descriptions of chemical and morphological heterogeneities. We present the first demonstration of combined high-speed X-ray diffraction (XRD) and XRD computed tomography (XRD-CT) to probe, in 3D, crystallographic heterogeneities within Li-ion electrodes with a spatial resolution of 1 µm. The local charge-transfer mechanism within and between individual particles was investigated in a silicon(Si)-graphite composite electrode. High-speed XRD revealed charge balancing kinetics between the graphite and Si during the minutes following the transition from operation to open circuit. Subparticle lithiation heterogeneities in both Si and graphite were observed using XRD-CT, where the core and shell structures were segmented, and their respective diffraction patterns were characterized.
Assuntos
Grafite/química , Lítio/química , Silício/química , Eletrodos , Tomografia Computadorizada por Raios X , Difração de Raios XRESUMO
The development of alternative electrocatalysts exhibiting high activity in the oxygen reduction reaction (ORR) is vital for the deployment of large-scale clean energy devices, such as fuel cells and zinc-air batteries. N-doped carbon materials offer a promising platform for the design and synthesis of electrocatalysts due to their high ORR activity, high surface area, and tunable porosity. In this study, materials in which MnO nanoparticles are entrapped in N-doped mesoporous carbon (MnO/NC) were developed as electrocatalysts for the ORR, and their performances were evaluated in zinc-air batteries. The obtained carbon materials had large surface area and high electrocatalytic activity toward the ORR. The carbon compounds were fabricated by using NaCl as template in a one-pot process, which significantly simplifies the procedure for preparing mesoporous carbon materials and in turn reduces the total cost. A primary zinc-air battery based on this material exhibits an open-circuit voltage of 1.49â V, which is higher than that of conventional zinc-air batteries with Pt/C (Pt/C cell) as ORR catalyst (1.41â V). The assembled zinc-air battery delivered a peak power density of 168â mW cm-2 at a current density of about 200â mA cm-2 , which is higher than that of an equivalent Pt/C cell (151â mW cm-2 at a current density of ca. 200â mA cm-2 ). The electrocatalytic data revealed that MnO/NC is a promising nonprecious-metal ORR catalyst for practical applications in metal-air batteries.
RESUMO
The importance of reliable battery diagnostic systems has grown substantially in recent years as a result of the use of high power Li-ion battery packs in an increasingly diverse range of applications. Here, spatially resolved ultrasound acoustic measurements are used to analyse the condition of Li-ion electrodes. Ultrasonic measurements are performed on a commercial mobile phone battery over the full operating voltage window with the lithiation and delithiation of electrodes observed at 36 locations on the surface of the cell. X-ray computed tomography was performed on the cell to ascertain the internal architecture and features that enabled the architecture of the battery to be correlated with the acoustic signature. Analyses of the acoustic signals obtained suggest that the anode and cathode layers can be identified by examining the change in attenuation associated with the charging process. It is also seen that expansions of the electrode layers are inhibited by the presence of the anode current collecting tab in the battery which leads to spatial inhomogeneities in the expansion of the electrode layer examined within the cell.
RESUMO
Photo-electrochemical (PEC) hydrogen generation is a promising technology and alternative to photovoltaic (PV)-electrolyser combined systems. Since there are no commercially available PEC cells and very limited field trials, a computer simulation was used to assess the efficacy of the approach for different domestic applications. Three mathematical models were used to obtain a view on how PEC generated hydrogen is able to cover demands for a representative dwelling. The analysed home was grid-connected and used a fuel cell based micro-CHP (micro-combined heat and power) system. Case studies were carried out that considered four different photo-electrode technologies to capture a range of current and possible future device efficiencies. The aim for this paper was to evaluate the system performance such as efficiency, fuel consumption and CO2 reduction capability. At the device unit level, the focus was on photo-electrode technological aspects, such as the effect of band-gap energy represented by different photo-materials on productivity of hydrogen and its uncertainty caused by the incident photon-to-current conversion efficiency (IPCE), which is highly electrode preparation specific. The presented dynamic model allows analysis of the performance of a renewable energy source integrated household with variable loads, which will aid system design and decision-making.
Assuntos
Simulação por Computador , Eletrólise , Hidrogênio/química , Modelos Teóricos , Processos Fotoquímicos , Energia Renovável , Eletrodos , Temperatura AltaRESUMO
Electrospun custom made flow battery electrodes are imaged in 3D using X-ray computed tomography. A variety of computational methods and simulations are applied to the images to determine properties including the porosity, fiber size, and pore size distributions as well as the material permeability and flow distributions. The simulations are performed on materials before and after carbonization to determine the effect it has in the internal microstructure and material properties. It is found that the deposited fiber size is constantly changing throughout the electrospinning process. The results also show that the surfaces of the fibrous material are the most severely altered during carbonization and that the rest of the material remained intact. Pressure driven flow is modeled using the lattice Boltzmann method and excellent agreement with experimental results is found. The simulations coupled with the material analysis also demonstrate the highly heterogeneous nature of the flow. Most of the flow is concentrated to regions with high porosity while regions with low porosity shield other pores and starve them of flow. The importance of imaging these materials in 3D is highlighted throughout.
RESUMO
Rational design and controllable synthesis of nanostructured materials with unique microstructure and excellent electrochemical performance for energy storage are crucially desired. In this paper, a facile method is reported for general synthesis of hierarchically core-shell structured Ni3 S2 @NiMoO4 nanowires (NWs) as a binder-free electrode for asymmetric supercapacitors. Due to the intimate contact between Ni3 S2 and NiMoO4 , the hierarchical structured electrodes provide a promising unique structure for asymmetric supercapacitors. The as-prepared binder-free Ni3 S2 @NiMoO4 electrode can significantly improve the electrical conductivity between Ni3 S2 and NiMoO4 , and effectively avoid the aggregation of NiMoO4 nanosheets, which provide more active space for storing charge. The Ni3 S2 @NiMoO4 electrode presents a high areal capacity of 1327.3 µAh cm-2 and 67.8% retention of its initial capacity when current density increases from 2 to 40 mA cm-2 . In a two-electrode Ni3 S2 @NiMoO4 //active carbon cell, the active materials deliver a high energy density of 121.5 Wh kg-1 at a power density of 2.285 kW kg-1 with excellent cycling stability.
RESUMO
Comprehensive identification of the phases and atomic configurations of bimetallic nanoparticle catalysts are critical in understanding structure-property relationships in catalysis. However, control of the structure, whilst retaining the same composition, is challenging. Here, the same carbon supported Pt3Sn catalyst is annealed under air, Ar and H2 resulting in variation of the extent of alloying of the two components. The atmosphere-induced extent of alloying is characterised using a variety of methods including TEM, XRD, XPS, XANES and EXAFS and is defined as the fraction of Sn present as Sn0 (XPS and XANES) or the ratio of the calculated composition of the bimetallic particle to the nominal composition according to the stoichiometric ratio of the preparation (TEM, XRD and EXAFS). The values obtained depend on the structural method used, but the trend air < Ar < H2 annealed samples is consistent. These results are then used to provide insights regarding the electrocatalytic activity of Pt3Sn catalysts for CO, methanol, ethanol and 1-butanol oxidation and the roles of alloyed Sn and SnO2.
RESUMO
Quartz Crystal Microbalance (QCM) sensors are actively being implemented in various fields due to their compatibility with different operating conditions in gaseous/liquid mediums for a wide range of measurements. This trend has been matched by the parallel advancement in tailored electronic interfacing systems for QCM sensors. That is, selecting the appropriate electronic circuit is vital for accurate sensor measurements. Many techniques were developed over time to cover the expanding measurement requirements (e.g., accommodating highly-damping environments). This paper presents a comprehensive review of the various existing QCM electronic interfacing systems. Namely, impedance-based analysis, oscillators (conventional and lock-in based techniques), exponential decay methods and the emerging phase-mass based characterization. The aforementioned methods are discussed in detail and qualitatively compared in terms of their performance for various applications. In addition, some theoretical improvements and recommendations are introduced for adequate systems implementation. Finally, specific design considerations of high-temperature microbalance systems (e.g., GaPO4 crystals (GCM) and Langasite crystals (LCM)) are introduced, while assessing their overall system performance, stability and quality compared to conventional low-temperature applications.
RESUMO
Catastrophic failure of lithium-ion batteries occurs across multiple length scales and over very short time periods. A combination of high-speed operando tomography, thermal imaging and electrochemical measurements is used to probe the degradation mechanisms leading up to overcharge-induced thermal runaway of a LiCoO2 pouch cell, through its interrelated dynamic structural, thermal and electrical responses. Failure mechanisms across multiple length scales are explored using a post-mortem multi-scale tomography approach, revealing significant morphological and phase changes in the LiCoO2 electrode microstructure and location dependent degradation. This combined operando and multi-scale X-ray computed tomography (CT) technique is demonstrated as a comprehensive approach to understanding battery degradation and failure.