Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 11(1): e1004008, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25569221

RESUMO

Metagenomic sequencing has produced significant amounts of data in recent years. For example, as of summer 2013, MG-RAST has been used to annotate over 110,000 data sets totaling over 43 Terabases. With metagenomic sequencing finding even wider adoption in the scientific community, the existing web-based analysis tools and infrastructure in MG-RAST provide limited capability for data retrieval and analysis, such as comparative analysis between multiple data sets. Moreover, although the system provides many analysis tools, it is not comprehensive. By opening MG-RAST up via a web services API (application programmers interface) we have greatly expanded access to MG-RAST data, as well as provided a mechanism for the use of third-party analysis tools with MG-RAST data. This RESTful API makes all data and data objects created by the MG-RAST pipeline accessible as JSON objects. As part of the DOE Systems Biology Knowledgebase project (KBase, http://kbase.us) we have implemented a web services API for MG-RAST. This API complements the existing MG-RAST web interface and constitutes the basis of KBase's microbial community capabilities. In addition, the API exposes a comprehensive collection of data to programmers. This API, which uses a RESTful (Representational State Transfer) implementation, is compatible with most programming environments and should be easy to use for end users and third parties. It provides comprehensive access to sequence data, quality control results, annotations, and many other data types. Where feasible, we have used standards to expose data and metadata. Code examples are provided in a number of languages both to show the versatility of the API and to provide a starting point for users. We present an API that exposes the data in MG-RAST for consumption by our users, greatly enhancing the utility of the MG-RAST service.


Assuntos
Sistemas de Gerenciamento de Base de Dados , Bases de Dados Genéticas , Genoma Bacteriano/genética , Metagenômica/métodos , Interface Usuário-Computador , Internet , Anotação de Sequência Molecular/métodos , Software
2.
J Bacteriol ; 193(11): 2880-1, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21460088

RESUMO

Here we present the genome of strain Exiguobacterium sp. AT1b, a thermophilic member of the genus Exiguobacterium whose representatives were isolated from various environments along a thermal and physicochemical gradient. This genome was sequenced to be a comparative resource for the study of thermal adaptation with a psychroactive representative of the genus, Exiguobacterium sibiricum strain 255-15, that was previously sequenced by the U.S. Department of Energy's (DOE's) Joint Genome Institute (JGI) (http://genome.ornl.gov/microbial/exig/).


Assuntos
Bacillales/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Análise de Sequência de DNA , Bacillales/isolamento & purificação , Microbiologia Ambiental , Temperatura Alta , Dados de Sequência Molecular
3.
Interface Focus ; 11(6): 20210018, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34956592

RESUMO

The race to meet the challenges of the global pandemic has served as a reminder that the existing drug discovery process is expensive, inefficient and slow. There is a major bottleneck screening the vast number of potential small molecules to shortlist lead compounds for antiviral drug development. New opportunities to accelerate drug discovery lie at the interface between machine learning methods, in this case, developed for linear accelerators, and physics-based methods. The two in silico methods, each have their own advantages and limitations which, interestingly, complement each other. Here, we present an innovative infrastructural development that combines both approaches to accelerate drug discovery. The scale of the potential resulting workflow is such that it is dependent on supercomputing to achieve extremely high throughput. We have demonstrated the viability of this workflow for the study of inhibitors for four COVID-19 target proteins and our ability to perform the required large-scale calculations to identify lead antiviral compounds through repurposing on a variety of supercomputers.

4.
J Bacteriol ; 191(8): 2864-70, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19201792

RESUMO

Brucellae are worldwide bacterial pathogens of livestock and wildlife, but phylogenetic reconstructions have been challenging due to limited genetic diversity. We assessed the taxonomic and evolutionary relationships of five Brucella species-Brucella abortus, B. melitensis, B. suis, B. canis, and B. ovis-using whole-genome comparisons. We developed a phylogeny using single nucleotide polymorphisms (SNPs) from 13 genomes and rooted the tree using the closely related soil bacterium and opportunistic human pathogen, Ochrobactrum anthropi. Whole-genome sequencing and a SNP-based approach provided the requisite level of genetic detail to resolve species in the highly conserved brucellae. Comparisons among the Brucella genomes revealed 20,154 orthologous SNPs that were shared in all genomes. Rooting with Ochrobactrum anthropi reveals that the B. ovis lineage is basal to the rest of the Brucella lineage. We found that B. suis is a highly divergent clade with extensive intraspecific genetic diversity. Furthermore, B. suis was determined to be paraphyletic in our analyses, only forming a monophyletic clade when the B. canis genome was included. Using a molecular clock with these data suggests that most Brucella species diverged from their common B. ovis ancestor in the past 86,000 to 296,000 years, which precedes the domestication of their livestock hosts. Detailed knowledge of the Brucella phylogeny will lead to an improved understanding of the ecology, evolutionary history, and host relationships for this genus and can be used for determining appropriate genotyping approaches for rapid detection and diagnostic assays for molecular epidemiological and clinical studies.


Assuntos
Brucella/classificação , Brucella/genética , DNA Bacteriano/genética , Genoma Bacteriano , Filogenia , Polimorfismo de Nucleotídeo Único , Animais , Análise por Conglomerados , Evolução Molecular , Humanos , Ochrobactrum anthropi/genética
5.
J Bacteriol ; 189(11): 4020-7, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17416667

RESUMO

Along with methane, methanol and methylated amines represent important biogenic atmospheric constituents; thus, not only methanotrophs but also nonmethanotrophic methylotrophs play a significant role in global carbon cycling. The complete genome of a model obligate methanol and methylamine utilizer, Methylobacillus flagellatus (strain KT) was sequenced. The genome is represented by a single circular chromosome of approximately 3 Mbp, potentially encoding a total of 2,766 proteins. Based on genome analysis as well as the results from previous genetic and mutational analyses, methylotrophy is enabled by methanol and methylamine dehydrogenases and their specific electron transport chain components, the tetrahydromethanopterin-linked formaldehyde oxidation pathway and the assimilatory and dissimilatory ribulose monophosphate cycles, and by a formate dehydrogenase. Some of the methylotrophy genes are present in more than one (identical or nonidentical) copy. The obligate dependence on single-carbon compounds appears to be due to the incomplete tricarboxylic acid cycle, as no genes potentially encoding alpha-ketoglutarate, malate, or succinate dehydrogenases are identifiable. The genome of M. flagellatus was compared in terms of methylotrophy functions to the previously sequenced genomes of three methylotrophs, Methylobacterium extorquens (an alphaproteobacterium, 7 Mbp), Methylibium petroleiphilum (a betaproteobacterium, 4 Mbp), and Methylococcus capsulatus (a gammaproteobacterium, 3.3 Mbp). Strikingly, metabolically and/or phylogenetically, the methylotrophy functions in M. flagellatus were more similar to those in M. capsulatus and M. extorquens than to the ones in the more closely related M. petroleiphilum species, providing the first genomic evidence for the polyphyletic origin of methylotrophy in Betaproteobacteria.


Assuntos
Genoma Bacteriano , Metanol/metabolismo , Metilaminas/metabolismo , Methylobacillus/genética , Vias Biossintéticas , Ciclo do Ácido Cítrico , Biologia Computacional , Evolução Molecular , Methylobacillus/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Oxirredução , Filogenia , Análise de Sequência de DNA
6.
Genome Biol ; 4(2): R14, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12620124

RESUMO

BACKGROUND: Tryptophan-pathway genes that exist within an apparent operon-like organization were evaluated as examples of multi-genic genomic regions that contain phylogenetically incongruous genes and coexist with genes outside the operon that are congruous. A seven-gene cluster in Xylella fastidiosa includes genes encoding the two subunits of anthranilate synthase, an aryl-CoA synthetase, and trpR. A second gene block, present in the Anabaena/Nostoc lineage, but not in other cyanobacteria, contains a near-complete tryptophan operon nested within an apparent supraoperon containing other aromatic-pathway genes. RESULTS: The gene block in X. fastidiosa exhibits a sharply delineated low-GC content. This, as well as bias of codon usage and 3:1 dinucleotide analysis, strongly implicates lateral gene transfer (LGT). In contrast, parametric studies and protein tree phylogenies did not support the origination of the Anabaena/Nostoc gene block by LGT. CONCLUSIONS: Judging from the apparent minimal amelioration, the low-GC gene block in X. fastidiosa probably originated by LGT at a relatively recent time. The surprising inability to pinpoint a donor lineage still leaves room for alternative, albeit less likely, explanations other than LGT. On the other hand, the large Anabaena/Nostoc gene block does not seem to have arisen by LGT. We suggest that the contemporary Anabaena/Nostoc array of divergent paralogs represents an ancient ancestral state of paralog divergence, with extensive streamlining by gene loss occurring in the lineage of descent representing other (unicellular) cyanobacteria.


Assuntos
Cianobactérias/genética , Gammaproteobacteria/genética , Transferência Genética Horizontal , Óperon/genética , Triptofano/biossíntese , Sequência de Aminoácidos , Anabaena/genética , Proteínas de Bactérias/genética , Sequência de Bases , Códon/genética , Cianobactérias/metabolismo , Gammaproteobacteria/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas Repressoras/genética , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA