Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Protoc ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886529

RESUMO

Microbial split-pool ligation transcriptomics (microSPLiT) is a high-throughput single-cell RNA sequencing method for bacteria. With four combinatorial barcoding rounds, microSPLiT can profile transcriptional states in hundreds of thousands of Gram-negative and Gram-positive bacteria in a single experiment without specialized equipment. As bacterial samples are fixed and permeabilized before barcoding, they can be collected and stored ahead of time. During the first barcoding round, the fixed and permeabilized bacteria are distributed into a 96-well plate, where their transcripts are reverse transcribed into cDNA and labeled with the first well-specific barcode inside the cells. The cells are mixed and redistributed two more times into new 96-well plates, where the second and third barcodes are appended to the cDNA via in-cell ligation reactions. Finally, the cells are mixed and divided into aliquot sub-libraries, which can be stored until future use or prepared for sequencing with the addition of a fourth barcode. It takes 4 days to generate sequencing-ready libraries, including 1 day for collection and overnight fixation of samples. The standard plate setup enables single-cell transcriptional profiling of up to 1 million bacterial cells and up to 96 samples in a single barcoding experiment, with the possibility of expansion by adding barcoding rounds. The protocol requires experience in basic molecular biology techniques, handling of bacterial samples and preparation of DNA libraries for next-generation sequencing. It can be performed by experienced undergraduate or graduate students. Data analysis requires access to computing resources, familiarity with Unix command line and basic experience with Python or R.

2.
Science ; 371(6531)2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33335020

RESUMO

Single-cell RNA sequencing (scRNA-seq) has become an essential tool for characterizing gene expression in eukaryotes, but current methods are incompatible with bacteria. Here, we introduce microSPLiT (microbial split-pool ligation transcriptomics), a high-throughput scRNA-seq method for Gram-negative and Gram-positive bacteria that can resolve heterogeneous transcriptional states. We applied microSPLiT to >25,000 Bacillus subtilis cells sampled at different growth stages, creating an atlas of changes in metabolism and lifestyle. We retrieved detailed gene expression profiles associated with known, but rare, states such as competence and prophage induction and also identified unexpected gene expression states, including the heterogeneous activation of a niche metabolic pathway in a subpopulation of cells. MicroSPLiT paves the way to high-throughput analysis of gene expression in bacterial communities that are otherwise not amenable to single-cell analysis, such as natural microbiota.


Assuntos
Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica , Redes e Vias Metabólicas/genética , RNA-Seq/métodos , Análise de Célula Única/métodos , Antibacterianos/biossíntese , Fagos Bacilares/fisiologia , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Carbono/metabolismo , Meios de Cultura , Escherichia coli/genética , Fermentação/genética , Gluconeogênese/genética , Glicólise/genética , Resposta ao Choque Térmico/genética , Inositol/metabolismo , Transporte de Íons , Metais/metabolismo , Movimento , Óperon , RNA Bacteriano/genética , Estresse Fisiológico , Transcrição Gênica , Transcriptoma , Ativação Viral
3.
BMC Syst Biol ; 6: 128, 2012 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23017156

RESUMO

BACKGROUND: A hub protein is one that interacts with many functional partners. The annotation of hub proteins, or more generally the protein-protein interaction "degree" of each gene, requires quality genome-wide data. Data obtained using yeast two-hybrid methods contain many false positive interactions between proteins that rarely encounter each other in living cells, and such data have fallen out of favor. RESULTS: We find that protein "stickiness", measured as network degree in ostensibly low quality yeast two-hybrid data, is a more predictive genomic metric than the number of functional protein-protein interactions, as assessed by supposedly higher quality high throughput affinity capture mass spectrometry data. In the yeast Saccharomyces cerevisiae, a protein's high stickiness, but not its high number of functional interactions, predicts low stochastic noise in gene expression, low plasticity of gene expression across different environments, and high probability of forming a homo-oligomer. Our results are robust to a multiple regression analysis correcting for other known predictors including protein abundance, presence of a TATA box and whether a gene is essential. Once the higher stickiness of homo-oligomers is controlled for, we find that homo-oligomers have noisier and more plastic gene expression than other proteins, consistent with a role for homo-oligomerization in mediating robustness. CONCLUSIONS: Our work validates use of the number of yeast two-hybrid interactions as a metric for protein stickiness. Sticky proteins exhibit low stochastic noise in gene expression, and low plasticity in expression across different environments.


Assuntos
Proteínas/genética , Proteínas/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Reações Falso-Positivas , Expressão Gênica , Espectrometria de Massas , Anotação de Sequência Molecular , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Proteínas/química , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA