Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nat Rev Mol Cell Biol ; 21(10): 585-606, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32457507

RESUMO

The term 'extracellular vesicles' refers to a heterogeneous population of vesicular bodies of cellular origin that derive either from the endosomal compartment (exosomes) or as a result of shedding from the plasma membrane (microvesicles, oncosomes and apoptotic bodies). Extracellular vesicles carry a variety of cargo, including RNAs, proteins, lipids and DNA, which can be taken up by other cells, both in the direct vicinity of the source cell and at distant sites in the body via biofluids, and elicit a variety of phenotypic responses. Owing to their unique biology and roles in cell-cell communication, extracellular vesicles have attracted strong interest, which is further enhanced by their potential clinical utility. Because extracellular vesicles derive their cargo from the contents of the cells that produce them, they are attractive sources of biomarkers for a variety of diseases. Furthermore, studies demonstrating phenotypic effects of specific extracellular vesicle-associated cargo on target cells have stoked interest in extracellular vesicles as therapeutic vehicles. There is particularly strong evidence that the RNA cargo of extracellular vesicles can alter recipient cell gene expression and function. During the past decade, extracellular vesicles and their RNA cargo have become better defined, but many aspects of extracellular vesicle biology remain to be elucidated. These include selective cargo loading resulting in substantial differences between the composition of extracellular vesicles and source cells; heterogeneity in extracellular vesicle size and composition; and undefined mechanisms for the uptake of extracellular vesicles into recipient cells and the fates of their cargo. Further progress in unravelling the basic mechanisms of extracellular vesicle biogenesis, transport, and cargo delivery and function is needed for successful clinical implementation. This Review focuses on the current state of knowledge pertaining to packaging, transport and function of RNAs in extracellular vesicles and outlines the progress made thus far towards their clinical applications.


Assuntos
Vesículas Extracelulares/metabolismo , Mamíferos/metabolismo , RNA/metabolismo , Animais , Transporte Biológico/fisiologia , Comunicação Celular/fisiologia , Humanos
2.
Mol Ther ; 31(7): 2206-2219, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37198883

RESUMO

X-linked dystonia-parkinsonism (XDP) is a neurodegenerative disease caused by a retrotransposon insertion in intron 32 of the TAF1 gene. This insertion causes mis-splicing of intron 32 (TAF1-32i) and reduced TAF1 levels. TAF1-32i transcript is unique to XDP patient cells and can be detected in their extracellular vesicles (EVs). We engrafted patient and control iPSC-derived neural progenitor cells (hNPCs) into the striatum of mice. To track TAF1-32i transcript spread by EVs, we transduced the brain-implanted hNPCs with a lentiviral construct called ENoMi, which consists of a re-engineered tetraspanin scaffold tagged with bioluminescent and fluorescent reporter proteins under an EF-1α promoter. Alongside this improved detection in ENoMi-hNPCs-derived EVs, their surface allows specific immunocapture purification, thereby facilitating TAF1-32i analysis. Using this ENoMi-labeling method, TAF1-32i was demonstrated in EVs released from XDP hNPCs implanted in mouse brains. Post-implantation of ENoMi-XDP hNPCs, TAF1-32i transcript was retrieved in EVs isolated from mouse brain and blood, and levels increased over time in plasma. We compared and combined our EV isolation technique to analyze XDP-derived TAF1-32i with other techniques, including size exclusion chromatography and Exodisc. Overall, our study demonstrates the successful engraftment of XDP patient-derived hNPCs in mice as a tool for monitoring disease markers with EVs.


Assuntos
Vesículas Extracelulares , Doenças Neurodegenerativas , Humanos , Camundongos , Animais , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo , Biomarcadores , Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo
3.
Mol Ther ; 31(7): 2220-2239, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37194237

RESUMO

In the central nervous system (CNS), the crosstalk between neural cells is mediated by extracellular mechanisms, including brain-derived extracellular vesicles (bdEVs). To study endogenous communication across the brain and periphery, we explored Cre-mediated DNA recombination to permanently record the functional uptake of bdEVs cargo over time. To elucidate functional cargo transfer within the brain at physiological levels, we promoted the continuous secretion of physiological levels of neural bdEVs containing Cre mRNA from a localized region in the brain by in situ lentiviral transduction of the striatum of Flox-tdTomato Ai9 mice reporter of Cre activity. Our approach efficiently detected in vivo transfer of functional events mediated by physiological levels of endogenous bdEVs throughout the brain. Remarkably, a spatial gradient of persistent tdTomato expression was observed along the whole brain, exhibiting an increment of more than 10-fold over 4 months. Moreover, bdEVs containing Cre mRNA were detected in the bloodstream and extracted from brain tissue to further confirm their functional delivery of Cre mRNA in a novel and highly sensitive Nanoluc reporter system. Overall, we report a sensitive method to track bdEV transfer at physiological levels, which will shed light on the role of bdEVs in neural communication within the brain and beyond.


Assuntos
Vesículas Extracelulares , Integrases , Camundongos , Animais , Camundongos Transgênicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Integrases/genética , Integrases/metabolismo , Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo
4.
Vet Res ; 54(1): 28, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973819

RESUMO

Streptococcus uberis is a major causative agent of bovine mastitis, an inflammation of the mammary gland with substantial economic consequences. To reduce antibiotic use in animal agriculture, alternative strategies to treat or prevent mastitis are being investigated. Bovine-associated non-aureus staphylococci are proposed in that respect due to their capacity to inhibit the in vitro growth of S. uberis. We demonstrate that priming the murine mammary gland with Staphylococcus chromogenes IM reduces S. uberis growth in comparison with non-primed glands. The innate immune system is activated by increasing IL-8 and LCN2, which may explain this decreased growth.


Assuntos
Doenças dos Bovinos , Mastite Bovina , Infecções Estreptocócicas , Feminino , Animais , Bovinos , Camundongos , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Glândulas Mamárias Animais/microbiologia , Streptococcus , Mastite Bovina/prevenção & controle , Mastite Bovina/microbiologia
5.
J Mammary Gland Biol Neoplasia ; 21(3-4): 113-122, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27714576

RESUMO

Breast tumorigenesis is classically studied in mice by inoculating tumor cells in the fat pad, the adipose compartment of the mammary gland. Alternatively, the mammary ducts, which constitute the luminal mammary gland compartment, also provide a suitable inoculation site to induce breast cancer in murine models. The microenvironments in these compartments influence tumor cell progression, yet this effect has not been investigated in an immunocompetent context. Here, we compared both mammary gland compartments as distinct inoculation sites, taking into account the immunological aspect by inoculating 4T1 tumor cells in immunocompetent mice. Following tumor cell inoculation in the adipose compartment of non-pretreated/naive, hormonally pretreated/naive and non-pretreated/lactating mice, the primary tumors developed similarly. However, a slower onset of primary tumor growth was found after inoculations in the luminal compartment of non-pretreated/lactating mice. Despite this difference in tumor development rate, metastasis to the liver and lungs was equally observed and was accompanied by lymphatic spreading of tumor cells and progressive splenomegaly with both inoculation types. Chitinase 3-like 1 (CHI3L1) and lipocalin 2 (LCN2) served as innovative biomarkers for disease progression showing increased levels in primary tumors and sera of the non-pretreated/lactating inoculation groups. A slower increase in circulating CHI3L1 but not LCN2 levels, was observed after inoculations in the luminal compartment which corroborated the slower tumor development at this inoculation site. Our results highlight the critical impact of different mammary gland compartments on tumor development in syngeneic murine models and support the use of novel tumor progression biomarkers in an immune-competent environment.


Assuntos
Tecido Adiposo/patologia , Carcinogênese/patologia , Neoplasias Mamárias Experimentais/patologia , Neoplasias de Mama Triplo Negativas/patologia , Tecido Adiposo/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Lactação/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Obesidade/metabolismo , Obesidade/patologia , Neoplasias de Mama Triplo Negativas/metabolismo
6.
Angew Chem Int Ed Engl ; 55(22): 6551-5, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27095479

RESUMO

The modulation of bacterial communication to potentiate the effect of existing antimicrobial drugs is a promising alternative to the development of novel antibiotics. In the present study, we synthesized 58 analogues of hamamelitannin (HAM), a quorum sensing inhibitor and antimicrobial potentiator. These efforts resulted in the identification of an analogue that increases the susceptibility of Staphylococcus aureus towards antibiotics in vitro, in Caenorhabditis elegans, and in a mouse mammary gland infection model, without showing cytotoxicity.


Assuntos
Antibacterianos/farmacologia , Ácido Gálico/análogos & derivados , Hexoses/farmacologia , Percepção de Quorum/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Relação Dose-Resposta a Droga , Ácido Gálico/química , Ácido Gálico/farmacologia , Hexoses/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
7.
iScience ; 27(2): 108807, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38303726

RESUMO

Glioblastoma (GBM) is the most aggressive brain tumor, presenting major challenges due to limited treatment options. Standard care includes radiation therapy (RT) to curb tumor growth and alleviate symptoms, but its impact on GBM is limited. In this study, we investigated the effect of RT on immune suppression and whether extracellular vesicles (EVs) originating from GBM and taken up by the tumor microenvironment (TME) contribute to the induced therapeutic resistance. We observed that (1) ionizing radiation increases immune-suppressive markers on GBM cells, (2) macrophages exacerbate immune suppression in the TME by increasing PD-L1 in response to EVs derived from GBM cells which is further modulated by RT, and (3) RT increases CD206-positive macrophages which have the most potential in inducing a pro-oncogenic environment due to their increased uptake of tumor-derived EVs. In conclusion, RT affects GBM resistance by immuno-modulating EVs taken up by myeloid cells in the TME.

8.
Adv Drug Deliv Rev ; 211: 115346, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38849005

RESUMO

Gene editing technologies have the potential to correct genetic disorders by modifying, inserting, or deleting specific DNA sequences or genes, paving the way for a new class of genetic therapies. While gene editing tools continue to be improved to increase their precision and efficiency, the limited efficacy of in vivo delivery remains a major hurdle for clinical use. An ideal delivery vehicle should be able to target a sufficient number of diseased cells in a transient time window to maximize on-target editing and mitigate off-target events and immunogenicity. Here, we review major advances in novel delivery platforms based on cell-derived vesicles - extracellular vesicles and virus-like particles - for transient delivery of gene editing payloads. We discuss major findings regarding packaging, in vivo biodistribution, therapeutic efficacy, and safety concerns of cell-derived vesicles delivery of gene editing cargos and their potential for clinical translation.

9.
J Fluoresc ; 23(5): 909-20, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23579930

RESUMO

In vivo optical imaging has become a popular tool in animal laboratories. Currently, many in vivo optical imaging systems are available on the market, which often makes it difficult for research groups to decide which system fits their needs best. In this work we compared different commercially available systems, which can measure both bioluminescent and fluorescent light. The systems were tested for their bioluminescent and fluorescent sensitivity both in vitro and in vivo. The IVIS Lumina II was found to be most sensitive for bioluminescence imaging, with the Photon Imager a close second. Contrary, the Kodak system was, in vitro, the most sensitive system for fluorescence imaging. In vivo, the fluorescence sensitivity of the systems was similar. Finally, we examined the added value of spectral unmixing algorithms for in vivo optical imaging and demonstrated that spectral unmixing resulted in at least a doubling of the in vivo sensitivity. Additionally, spectral unmixing also enabled separate imaging of dyes with overlapping spectra which were, without spectral unmixing, not distinguishable.


Assuntos
Luminescência , Algoritmos , Animais , Temperatura Corporal , Corantes/química , Escherichia coli/química , Feminino , Lipossomos/química , Camundongos , Camundongos Endogâmicos , Camundongos Nus , Imagem Óptica/instrumentação
10.
J Dairy Sci ; 96(11): 7082-7087, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24054294

RESUMO

Bovine mastitis undermines udder health, jeopardizes milk production, and entails prohibitive costs, estimated at $2 billion per year in the dairy industry of the United States. Despite intensive research, the dairy industry has not managed to eradicate the 3 major bovine mastitis-inducing pathogens: Staphylococcus aureus, Streptococcus uberis, and Escherichia coli. In this study, the antimicrobial efficacy of a newly formulated biphenomycin compound (AIC102827) was assessed against intramammary Staph. aureus, Strep. uberis, and E. coli infections, using an experimental mouse mastitis model. Based on its effective and protective doses, AIC102827 applied into the mammary gland was most efficient to treat Staph. aureus, but also adequately reduced growth of Strep. uberis or E. coli, indicating its potential as a broad-spectrum candidate to treat staphylococcal, streptococcal, and coliform mastitis in dairy cattle.


Assuntos
Antibacterianos/administração & dosagem , Escherichia coli/efeitos dos fármacos , Mastite/veterinária , Peptídeos Cíclicos/administração & dosagem , Staphylococcus aureus/efeitos dos fármacos , Streptococcus/efeitos dos fármacos , Animais , Bovinos , Modelos Animais de Doenças , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/veterinária , Feminino , Glândulas Mamárias Animais/efeitos dos fármacos , Mastite/tratamento farmacológico , Mastite/microbiologia , Mastite Bovina/tratamento farmacológico , Camundongos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/veterinária , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/veterinária
11.
J Control Release ; 356: 493-506, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36907561

RESUMO

Diseases of the central nervous system (CNS) are challenging to treat, mainly due to the blood-brain barrier (BBB), which restricts drugs in circulation from entering target regions in the brain. To address this issue extracellular vesicles (EVs) have gained increasing scientific interest as carriers able to cross the BBB with multiplex cargos. EVs are secreted by virtually every cell, and their escorted biomolecules are part of an intercellular information gateway between cells within the brain and with other organs. Scientists have undertaken efforts to safeguard the inherent features of EVs as therapeutic delivery vehicles, such as protecting and transferring functional cargo, as well as loading them with therapeutic small molecules, proteins, and oligonucleotides and targeting them to specific cell types for the treatment of CNS diseases. Here, we review current emerging approaches that engineer the EV surface and cargo to improve targeting and functional responses in the brain. We summarize existing applications of engineered EVs as a therapeutic delivery platform for brain diseases, some of which have been evaluated clinically.


Assuntos
Encefalopatias , Vesículas Extracelulares , Humanos , Sistema Nervoso Central , Encéfalo , Vesículas Extracelulares/metabolismo , Encefalopatias/metabolismo , Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos
12.
Front Oncol ; 13: 1291177, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38074665

RESUMO

Glioblastoma (GB) tumors are one of the most insidious cancers which take over the brain and defy therapy. Over time and in response to treatment the tumor and the brain cells in the tumor microenvironment (TME) undergo many genetic/epigenetic driven changes in their phenotypes and this is reflected in the cellular contents within the extracellular vesicles (EVs) they produce. With the result that some EVs try to subdue the tumor (friends of the brain), while others participate in the glioblastoma takeover (foes of the brain) in a dynamic and ever changing process. Monitoring the contents of these EVs in biofluids can inform decisions based on GB status to guide therapeutic intervention. This review covers primarily recent research describing the different cell types in the brain, as well as the tumor cells, which participate in this EV deluge. This includes EVs produced by the tumor which manipulate the transcriptome of normal cells in their environment in support of tumor growth (foes), as well as responses of normal cells which try to restrict tumor growth and invasion, including traveling to cervical lymph nodes to present tumor neo-antigens to dendritic cells (DCs). In addition EVs released by tumors into biofluids can report on the status of living tumor cells via their cargo and thus serving as biomarkers. However, EVs released by tumor cells and their influence on normal cells in the tumor microenvironment is a major factor in immune suppression and coercion of normal brain cells to join the GB "band wagon". Efforts are being made to deploy EVs as therapeutic vehicles for drugs and small inhibitory RNAs. Increasing knowledge about EVs in the TME is being utilized to track tumor progression and response to therapy and even to weaponize EVs to fight the tumor.

13.
bioRxiv ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36811091

RESUMO

In the central nervous system (CNS), the crosstalk between neural cells is mediated by extracellular mechanisms, including brain-derived extracellular vesicles (bdEVs). To study endogenous communication across the brain and periphery, we explored Cre-mediated DNA recombination to permanently record the functional uptake of bdEVs cargo overtime. To elucidate functional cargo transfer within the brain at physiological levels, we promoted the continuous secretion of physiological levels of neural bdEVs containing Cre mRNA from a localized region in the brain by in situ lentiviral transduction of the striatum of Flox-tdTomato Ai9 mice reporter of Cre activity. Our approach efficiently detected in vivo transfer of functional events mediated by physiological levels of endogenous bdEVs throughout the brain. Remarkably, a spatial gradient of persistent tdTomato expression was observed along the whole brain exhibiting an increment of more than 10-fold over 4 months. Moreover, bdEVs containing Cre mRNA were detected in the bloodstream and extracted from brain tissue to further confirm their functional delivery of Cre mRNA in a novel and highly sensitive Nanoluc reporter system. Overall, we report a sensitive method to track bdEVs transfer at physiological levels which will shed light on the role of bdEVs in neural communication within the brain and beyond.

14.
Neuroscience ; 491: 240-270, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35395355

RESUMO

Glioblastoma multiforme (GBM) is one of the most common, most formidable, and deadliest malignant types of primary astrocytoma with a poor prognosis. At present, the standard of care includes surgical tumor resection, followed by radiation therapy concomitant with chemotherapy and temozolomide. New developments and significant advances in the treatment of GBM have been achieved in recent decades. However, despite the advances, recurrence is often inevitable, and the survival of patients remains low. Various factors contribute to the difficulty in identifying an effective therapeutic option, among which are tumor complexity, the presence of the blood-brain barrier (BBB), and the presence of GBM cancer stem cells, prompting the need for improving existing treatment approaches and investigating new treatment alternatives for ameliorating the treatment strategies of GBM. In this review, we outline some of the most recent literature on the various available treatment options such as surgery, radiotherapy, cytotoxic chemotherapy, gene therapy, immunotherapy, phototherapy, nanotherapy, and tumor treating fields in the treatment of GBM, and we list some of the potential future directions of GBM. The reviewed studies confirm that GBM is a sophisticated disease with several challenges for scientists to address. Hence, more studies and a multimodal therapeutic approach are crucial to yield an effective cure and prolong the survival of GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Humanos , Imunoterapia , Células-Tronco Neoplásicas/patologia , Temozolomida/uso terapêutico
15.
Commun Biol ; 5(1): 485, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590035

RESUMO

Cell membrane-based biovesicles (BVs) are important candidate drug delivery vehicles and comprise extracellular vesicles, virus-like particles, and lentiviral vectors. Here, we introduce a non-enzymatic assembly of purified BVs, supercharged proteins, and plasmid DNA called pDNA-scBVs. This multicomponent vehicle results from the interaction of negative sugar moieties on BVs and supercharged proteins that contain positively charged amino acids on their surface to enhance their affinity for pDNA. pDNA-scBVs were demonstrated to mediate floxed reporter activation in culture by delivering a Cre transgene. We introduced pDNA-scBVs containing both a CRE-encoding plasmid and a BV-packaged floxed reporter into the brains of Ai9 mice. Successful delivery of both payloads by pDNA-scBVs was confirmed with reporter signal in the striatal brain region. Overall, we developed a more efficient method to load isolated BVs with cargo that functionally modified recipient cells. Augmenting the natural properties of BVs opens avenues for adoptive extracellular interventions using therapeutic loaded cargo.


Assuntos
DNA , Vesículas Extracelulares , Animais , DNA/genética , Sistemas de Liberação de Medicamentos , Vesículas Extracelulares/metabolismo , Camundongos , Plasmídeos , Transgenes
16.
Biomaterials ; 281: 121366, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35033904

RESUMO

The lack of techniques to trace brain cell behavior in vivo hampers the ability to monitor status of cells in a living brain. Extracellular vesicles (EVs), nanosized membrane-surrounded vesicles, released by virtually all brain cells might be able to report their status in easily accessible biofluids, such as blood. EVs communicate among tissues using lipids, saccharides, proteins, and nucleic acid cargo that reflect the state and composition of their source cells. Currently, identifying the origin of brain-derived EVs has been challenging, as they consist of a rare population diluted in an overwhelming number of blood and peripheral tissue-derived EVs. Here, we developed a sensitive platform to select out pre-labelled brain-derived EVs in blood as a platform to study the molecular fingerprints of brain cells. This proof-of-principle study used a transducible construct tagging tetraspanin (TSN) CD63, a membrane-spanning hallmark of EVs equipped with affinity, bioluminescent, and fluorescent tags to increase detection sensitivity and robustness in capture of EVs secreted from pre-labelled cells into biofluids. Our platform enables unprecedented efficient isolation of neural EVs from the blood. These EVs derived from pre-labelled mouse brain cells or engrafted human neuronal progenitor cells (hNPCs) were submitted to multiplex analyses, including transcript and protein levels, in compliance with the multibiomolecule EV carriers. Overall, our novel strategy to track brain-derived EVs in a complex biofluid opens up new avenues to study EVs released from pre-labelled cells in near and distal compartments into the biofluid source.


Assuntos
Vesículas Extracelulares , Animais , Fenômenos Biofísicos , Encéfalo/metabolismo , Vesículas Extracelulares/metabolismo , Camundongos , Tetraspaninas/metabolismo
17.
Front Immunol ; 13: 1086413, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605196

RESUMO

Introduction: Confronted with the emerging threat of antimicrobial resistance, the development of alternative strategies to limit the use of antibiotics or potentiate their effect through synergy with the immune system is urgently needed. Many natural or synthetic biological response modifiers have been investigated in this context. Among them, ß-glucans, a type of soluble or insoluble polysaccharide composed of a linear or branched string of glucose molecules produced by various cereals, bacteria, algae, and inferior (yeast) and superior fungi (mushrooms) have garnered interest in the scientific community, with not less than 10,000 publications over the last two decades. Various biological activities of ß-glucans have been reported, such as anticancer, antidiabetic and immune-modulating effects. In vitro, yeast ß-glucans are known to markedly increase cytokine secretion of monocytes/macrophages during a secondary challenge, a phenomenon called immune training. Methods: Here, we orally delivered ß-glucans derived from the yeast S. cerevisiae to mice that were further challenged with Escherichia coli. Results: ß-glucan supplementation protected the mice from E. coli intraperitoneal and intra-mammary infections, as shown by a lower bacterial burden and greatly diminished tissue damage. Surprisingly, this was not associated with an increased local immune response. In addition, granulocyte recruitment was transient and limited, as well as local cytokine secretion, arguing for faster resolution of the inflammatory response. Furthermore, ex-vivo evaluation of monocytes/macrophages isolated or differentiated from ß-glucan-supplemented mice showed these cells to lack a trained response versus those from control mice. Conclusion: In conclusion, dietary ß-glucans can improve the outcome of Escherichia coli infections and dampen tissue damages associated to excessive inflammatory response. The mechanisms associated with such protection are not necessarily linked to immune system hyper-activation or immune training.


Assuntos
Fermento Seco , beta-Glucanas , Camundongos , Animais , beta-Glucanas/farmacologia , Saccharomyces cerevisiae , Escherichia coli , Monócitos , Macrófagos , Citocinas
18.
ACS Nano ; 15(11): 16957-16973, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34677049

RESUMO

The International Society of RNA Nanotechnology and Nanomedicine (ISRNN) hosts an annual meeting series focused on presenting the latest research achievements involving RNA-based therapeutics and strategies, aiming to expand their current biomedical applications while overcoming the remaining challenges of the burgeoning field of RNA nanotechnology. The most recent online meeting hosted a series of engaging talks and discussions from an international cohort of leading nanotechnologists that focused on RNA modifications and modulation, dynamic RNA structures, overcoming delivery limitations using a variety of innovative platforms and approaches, and addressing the newly explored potential for immunomodulation with programmable nucleic acid nanoparticles. In this Nano Focus, we summarize the main discussion points, conclusions, and future directions identified during this two-day webinar as well as more recent advances to highlight and to accelerate this exciting field.


Assuntos
Nanomedicina , Nanopartículas , Humanos , RNA/química , Nanotecnologia , Nanopartículas/química , Sistemas de Liberação de Medicamentos
19.
Front Vet Sci ; 7: 576583, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240956

RESUMO

Iron is an essential nutrient for bacterial growth. Therefore, bacteria have evolved chelation mechanisms to acquire iron for their survival. Enterobactin, a chelator with high affinity for ferric iron, is secreted by Escherichia coli and contributes to its improved bacterial fitness. In this preliminary study, we evaluated enterobactin deficiency both in vitro and in vivo in the context of E. coli mastitis. Firstly, we showed that expression of lipocalin 2, a protein produced by the host that is able to both bind and deplete enterobactin, is increased upon E. coli infection in the cow's mastitic mammary gland. Secondly, we demonstrated in vitro that enterobactin deficiency does not alter interleukin (IL)-8 expression in bovine mammary epithelial cells and its associated neutrophil recruitment. However, a significantly increased reactive oxygen species production of these neutrophils was observed. Thirdly, we showed there was no significant difference in bacterial in vitro growth between the enterobactin-deficient mutant and its wild-type counterpart. However, when further explored in a murine model for bovine mastitis, the enterobactin-deficient mutant vs. the wild-type strain revealed a significant reduction of the bacterial load and, consequently, a decrease in pro-inflammatory cytokines (IL-1α,-1ß,-4,-6, and-8). A reduced neutrophilic influx was also observed immunohistochemically. These findings therefore identify interference of the enterobactin iron-scavenging mechanism as a potential measure to decrease the fitness of E. coli in the mastitic mammary gland.

20.
J Exp Clin Cancer Res ; 37(1): 191, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111338

RESUMO

BACKGROUND: Murine breast cancer models relying on intraductal tumor cell inoculations are attractive because they allow the study of breast cancer from early ductal carcinoma in situ to metastasis. Using a fully immunocompetent 4T1-based intraductal model for triple-negative breast cancer (TNBC) we aimed to investigate the immunological responses that guide such intraductal tumor progression, focusing on the prominent role of macrophages. METHODS: Intraductal inoculations were performed in lactating female mice with luciferase-expressing 4T1 mammary tumor cells either with or without additional RAW264.7 macrophages, mimicking basal versus increased macrophage-tumor cell interactions in the ductal environment. Imaging of 4T1-derived luminescence was used to monitor primary tumor growth and metastases. Tumor proliferation, hypoxia, disruption of the ductal architecture and tumor immune populations were determined immunohistochemically. M1- (pro-inflammatory) and M2-related (anti-inflammatory) cytokine levels were determined by Luminex assays and ELISA to investigate the activation state of the macrophage inoculum. Levels of the metastatic proteins matrix metalloproteinase 9 (MMP-9) and vascular endothelial growth factor (VEGF) as well as of the immune-related disease biomarkers chitinase 3-like 1 (CHI3L1) and lipocalin 2 (LCN2) were measured by ELISA to evaluate disease progression at the protein level. RESULTS: Mice intraductally co-injected with macrophages showed severe splenomegaly with faster ductal breakthrough of tumor cells and increased metastases in axillary lymph nodes and lungs. These mice showed higher M1-related cytokines in the early disease stages (at 1 to 3 weeks post-inoculation) due to the pro-inflammatory nature of RAW264.7 macrophages with increased Ly6G-positive neutrophils and decreased anti-inflammatory macrophages in the tumor microenvironment. However, upon metastasis (at 5 weeks post-inoculation), a prominent increase in M2-related cytokine levels was detected and established a tumor microenvironment with similar immune populations and cytokine responses as in mice which received only 4T1 tumor cells. The observed tumor-associated immune responses and the increased metastasis were associated with significantly induced local and systemic levels of MMP-9, VEGF, CHI3L1 and LCN2. CONCLUSIONS: The current experimental study with an innovative immunocompetent intraductal model for TNBC pinpoints towards a metastasis-supporting M1 to M2 macrophage polarization in the mammary ducts mediated by 4T1-derived signaling. We propose to explore this process as immunotherapeutic target.


Assuntos
Macrófagos/imunologia , Neoplasias Mamárias Experimentais/imunologia , Neoplasias de Mama Triplo Negativas/imunologia , Animais , Carcinoma Ductal de Mama/imunologia , Carcinoma Ductal de Mama/patologia , Linhagem Celular Tumoral , Polaridade Celular/imunologia , Modelos Animais de Doenças , Feminino , Macrófagos/patologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Células RAW 264.7 , Transdução de Sinais , Esplenomegalia/imunologia , Esplenomegalia/patologia , Neoplasias de Mama Triplo Negativas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA