Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Biol ; 18(6): e3000728, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32516311

RESUMO

The development of multicellularity is a key evolutionary transition allowing for differentiation of physiological functions across a cell population that confers survival benefits; among unicellular bacteria, this can lead to complex developmental behaviors and the formation of higher-order community structures. Herein, we demonstrate that in the social δ-proteobacterium Myxococcus xanthus, the secretion of a novel biosurfactant polysaccharide (BPS) is spatially modulated within communities, mediating swarm migration as well as the formation of multicellular swarm biofilms and fruiting bodies. BPS is a type IV pilus (T4P)-inhibited acidic polymer built of randomly acetylated ß-linked tetrasaccharide repeats. Both BPS and exopolysaccharide (EPS) are produced by dedicated Wzx/Wzy-dependent polysaccharide-assembly pathways distinct from that responsible for spore-coat assembly. While EPS is preferentially produced at the lower-density swarm periphery, BPS production is favored in the higher-density swarm interior; this is consistent with the former being known to stimulate T4P retraction needed for community expansion and a function for the latter in promoting initial cell dispersal. Together, these data reveal the central role of secreted polysaccharides in the intricate behaviors coordinating bacterial multicellularity.


Assuntos
Myxococcus xanthus/citologia , Myxococcus xanthus/metabolismo , Polissacarídeos Bacterianos/metabolismo , Acetilação , Vias Biossintéticas/genética , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Membrana Celular/metabolismo , Família Multigênica , Myxococcus xanthus/genética , Polissacarídeos Bacterianos/química , Espectroscopia de Prótons por Ressonância Magnética , Tensoativos/metabolismo
2.
Soft Matter ; 18(46): 8733-8747, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36341841

RESUMO

Liquid foams are multi-scale structures whose structural characterization requires the combination of very different techniques. This inherently complex task is made more difficult by the fact that foams are also intrinsically unstable systems and that their properties are highly dependent on the production protocol and sample container. To tackle these issues, a new device has been developed that enables the simultaneous time-resolved investigation of foams by small-angle neutron scattering (SANS), electrical conductivity, and bubbles imaging. This device allows the characterization of the foam and its aging from nanometer up to centimeter scale in a single experiment. A specific SANS model was developed to quantitatively adjust the scattering intensity from the dry foam. Structural features such as the liquid fraction, specific surface area of the Plateau borders and inter-bubble films, and thin film thickness were deduced from this analysis, and some of these values were compared with values extracted from the other applied techniques. This approach has been applied to a surfactant-stabilized liquid foam under free drainage and the underlying foam destabilization mechanisms were discussed with unprecedented detail. For example, the information extracted from the image analysis and SANS data allows for the first time to determine the disjoining pressure vs. thickness isotherm in a real, draining foam.

3.
MAGMA ; 25(6): 467-78, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22790646

RESUMO

OBJECT: Paramagnetic nanoparticles, mainly rare earth oxides and hydroxides, have been produced these last few years for use as MRI contrast agents. They could become an interesting alternative to iron oxide particles. However, their relaxation properties are not well understood. MATERIALS AND METHODS: Magnetometry, (1)H and (2)H NMR relaxation results at different magnetic fields and electron paramagnetic resonance are used to investigate the relaxation induced by paramagnetic particles. When combined with computer simulations of transverse relaxation, they allow an accurate description of the relaxation induced by paramagnetic particles. RESULTS: For gadolinium hydroxide particles, both T(1) and T(2) relaxation are due to a chemical exchange of protons between the particle surface and bulk water, called inner sphere relaxation. The inner sphere is also responsible for T(1) relaxation of dysprosium, holmium, terbium and erbium containing particles. However, for these latter compounds, T(2) relaxation is caused by water diffusion in the field inhomogeneities created by the magnetic particle, the outer-sphere relaxation mechanism. The different relaxation behaviors are caused by different electron relaxation times (estimated by electron paramagnetic resonance). CONCLUSION: These findings may allow tailoring paramagnetic particles: ultrasmall gadolinium oxide and hydroxide particles for T(1) contrast agents, with shapes ensuring the highest surface-to-volume ratio. All the other compounds present interesting T(2) relaxation performance at high fields. These results are in agreement with computer simulations and theoretical predictions of the outer-sphere and static dephasing regime theories. The T(2) efficiency would be optimum for spherical particles of 40-50 nm radius.


Assuntos
Meios de Contraste/farmacologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Magnetismo , Nanopartículas/química , Simulação por Computador , Disprósio/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Elétrons , Érbio/química , Gadolínio/química , Hólmio/química , Humanos , Microscopia Eletrônica de Transmissão/métodos , Modelos Estatísticos , Tamanho da Partícula , Prótons , Térbio/química , Difração de Raios X/métodos
5.
Chem Commun (Camb) ; (3): 369-71, 2005 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-15645040

RESUMO

Dihydrolipoic acid (DHLA) capped gold nanoparticles (Au@DHLA) are characterized in solid and liquid states by sulfur K-edge XANES spectroscopy; it clearly shows that DHLA is anchored to gold thanks to both sulfur ends.

6.
Contrast Media Mol Imaging ; 8(6): 466-74, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24375902

RESUMO

Magnetic resonance imaging (MRI) offers the possibility of tracking cells labelled with a contrast agent and evaluating the progress of cell therapies. This requires efficient cell labelling with contrast agents. A basic incubation of cells with iron oxide nanoparticles (NPs) is a common method. This study reports the synthesis at the gram scale of iron oxide nanoparticles as MRI T2 contrast agents for cell labelling. These NPs are based on small iron oxide cores coated with a thin polysiloxane shell presenting carboxylic acid functions. The iron oxide cores produced have been characterized by transmission electron microscopy, X-ray diffraction, ζ-potential, infrared, photon correlation spectroscopy, atomic force microscopy, magnetometry and relaxometric measurements. These measurements confirmed the expected surface modification by carboxysilane. Carboxylic groups created electrostatic repulsion between NPs when they are deprotonated. Therefore, highly concentrated aqueous solutions of carboxysilane coated iron oxide NPs can be obtained, up to 70% (w/w). These NPs could be used for cell labelling owing to their aggregation and re-dispersion properties. NPs precipitated in Dulbecco's modified Eagle medium induced a rapid association with 3 T6 fibroblast cells and could easily be re-dispersed in phosphate buffer saline solution to obtain properly labelled cells.


Assuntos
Materiais Revestidos Biocompatíveis/química , Meios de Contraste/química , Compostos Férricos/química , Nanopartículas de Magnetita/química , Siloxanas/química , Coloração e Rotulagem , Animais , Linhagem Celular , Fibroblastos/citologia , Nanopartículas de Magnetita/ultraestrutura , Camundongos
7.
Future Med Chem ; 2(3): 427-49, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21426176

RESUMO

Due to their high magnetization, superparamagnetic iron oxide nanoparticles induce an important decrease in the transverse relaxation of water protons and are, therefore, very efficient negative MRI contrast agents. The knowledge and control of the chemical and physical characteristics of nanoparticles are of great importance. The choice of the synthesis method (microemulsions, sol-gel synthesis, laser pyrolysis, sonochemical synthesis or coprecipitation) determines the magnetic nanoparticle's size and shape, as well as its size distribution and surface chemistry. Nanoparticles can be used for numerous in vivo applications, such as MRI contrast enhancement and hyperthermia drug delivery. New developments focus on targeting through molecular imaging and cell tracking.


Assuntos
Meios de Contraste/química , Compostos Férricos/química , Imageamento por Ressonância Magnética/métodos , Magnetismo , Nanopartículas Metálicas/química , Animais , Estrutura Molecular , Tamanho da Partícula , Eletricidade Estática
8.
J Am Chem Soc ; 129(16): 5076-84, 2007 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-17397154

RESUMO

Luminescent hybrid nanoparticles with a paramagnetic Gd2O3 core were applied as contrast agents for both in vivo fluorescence and magnetic resonance imaging. These hybrid particles were obtained by encapsulating Gd2O3 cores within a polysiloxane shell which carries organic fluorophores and carboxylated PEG covalently tethered to the inorganic network. Longitudinal proton relaxivities of these particles are higher than the positive contrast agents like Gd-DOTA which are commonly used for clinical magnetic resonance imaging. Moreover these particles can be followed up by fluorescence imaging. This study revealed that these particles suited for dual modality imaging freely circulate in the blood vessels without undesirable accumulation in lungs and liver.


Assuntos
Meios de Contraste/farmacocinética , Gadolínio/farmacocinética , Imageamento por Ressonância Magnética , Nanopartículas/química , Animais , Meios de Contraste/química , Fluorescência , Gadolínio/sangue , Gadolínio/química , Compostos Heterocíclicos/química , Fígado/metabolismo , Pulmão/metabolismo , Camundongos , Camundongos Nus , Compostos Organometálicos/química , Polietilenoglicóis/química , Ratos , Siloxanas/química
9.
Langmuir ; 21(6): 2526-36, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15752049

RESUMO

The use of gold nanoparticles as biological probes requires the improvement of colloidal stability. Dihydrolipoic acid (DHLA), a dithiol obtained by the reduction of thioctic acid, appears therefore very attractive for the stabilization and the further functionalization of gold nanoparticles because DHLA is characterized by a carboxylic acid group and two thiol functions. The ionizable carboxylic acid groups ensure, for pH > or = 8, the water solubility of DHLA-capped gold (Au@DHLA) nanoparticles, prepared by the Brust protocol, and the stability of the resulting colloid by electrostatic repulsions. Moreover almost all DHLA, adsorbed onto gold, adopts a conformation allowing their immobilization by both sulfur ends. It is proved by sulfur K-edge X-ray absorption near edge structure spectroscopy, which appears as an appropriate tool for determining the chemical form of sulfur atoms present in the organic monolayer. Such a grafting renders the DHLA monolayers more resistant to displacement by dithiothreitol than mercaptoundecanoic acid monolayers. The presence of DHLA on gold particles allows their functionalization by the electroluminescent luminol through amine coupling reactions assisted by 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide. As a luminol-functionalized particle is nine times as bright as a single luminol molecule, the use of the particles as a biological probe with a lower threshold of detection is envisaged.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA