Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 930: 172383, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38641114

RESUMO

The United Nations has issued a warning over the limited time for climate disaster prevention. In the last two decades, several countries have set targets to reduce fossil fuel usage and greenhouse gas emissions. These goals are tracked through the adoption of energy systems that prioritise efficiency and low-carbon alternatives, in alignment with the Sustainable Development Goals outlined by the United Nations. In the winemaking sector, the wine produced in the European Union comprised 65 % of the worldwide total from 2014 to 2018, with vineyards making up 4.7 % of its farms in 2020. Electricity is the primary source of energy used in vineries, accounting for around 90 % of the total energy consumption. The energy consumption associated with winemaking is mostly attributed to two key processes: fermentation, which accounts for 45 % to 90 % of the entire energy consumption, and bottling and storage, which contribute around 18 % of the overall energy consumption. The aim of this article is to provide an integrated review of energy efficiency in wineries through examining 144 academic publications. The selected publications cover various aspects, including sustainable energy utilisation in the wine industry, thermal performance analysis of buildings, energy efficiency assessment of systems and technologies, and the integration of renewable energy sources. A link has been established between the geographic distribution of academic publications and wine-producing countries. In relation to European publications, it is observed that research funding is associated with the energy directives of the European Union. It can also be concluded that wine customers are pushing for environmentally friendly practices. However, not everyone in the winemaking sector is moving in the same direction or at the same pace. To identify areas for improvement, winemakers must have supporting tools to manage energy use. Systems optimisation, monitoring, and accounting can be used to decrease energy consumption in winemaking processes or equipment. Progresses on sustainable energy use through greater energy efficiency and share of renewable energies in the wineries can contribute to the reduction of greenhouse gas emissions, and consequently, brings the wine industry closer to climate neutrality.

2.
Materials (Basel) ; 17(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38541579

RESUMO

A favorable environment for fungi colonization in building materials' surfaces can emerge when certain hygrothermal conditions occur. Thus, reducing fungal growth susceptibility is of major interest. Furthermore, if the integration of bio-wastes is performed in parallel with the development of innovative materials for this purpose, a more sustainable and environmentally friendly material can be obtained. In this study, the fungal susceptibility of lime mortars incorporating almond-shell powder (ASP) microparticles (2 and 4%, wt.-wt. in relation to the binder content) was evaluated. The particle-dispersion technique was employed to prepare the bio-waste introduced in the mixtures. The fungal susceptibility of ASP samples was compared with nanotitania (n-TiO2) with recognized antifungal properties. Mechanical strength, water absorption, and wettability tests were also performed for a better characterization of the composites. Although the addition of 2% ASP led to mechanical properties reduction, an increase in the compressive and flexural strength resulted for 4% of the ASP content. Difficulties in fungal growth were observed for the samples incorporating ASP. No fungal development was detected in the mortar with 2% of ASP, which may be correlated with an increase in the surface hydrophobic behavior. Furthermore, mortars with ASP revealed a reduction in water absorption by capillarity ability, especially with 4% content, suggesting changes in the microstructure and pore characteristics. The results also demonstrated that an improvement in the physical and mechanical properties of the lime mortars can be achieved when ASP microparticles are previously subjected to dispersion techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA