Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 130: 273-292, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26827811

RESUMO

Understanding the electrophysiological basis of resting state networks (RSNs) in the human brain is a critical step towards elucidating how inter-areal connectivity supports healthy brain function. In recent years, the relationship between RSNs (typically measured using haemodynamic signals) and electrophysiology has been explored using functional Magnetic Resonance Imaging (fMRI) and magnetoencephalography (MEG). Significant progress has been made, with similar spatial structure observable in both modalities. However, there is a pressing need to understand this relationship beyond simple visual similarity of RSN patterns. Here, we introduce a mathematical model to predict fMRI-based RSNs using MEG. Our unique model, based upon a multivariate Taylor series, incorporates both phase and amplitude based MEG connectivity metrics, as well as linear and non-linear interactions within and between neural oscillations measured in multiple frequency bands. We show that including non-linear interactions, multiple frequency bands and cross-frequency terms significantly improves fMRI network prediction. This shows that fMRI connectivity is not only the result of direct electrophysiological connections, but is also driven by the overlap of connectivity profiles between separate regions. Our results indicate that a complete understanding of the electrophysiological basis of RSNs goes beyond simple frequency-specific analysis, and further exploration of non-linear and cross-frequency interactions will shed new light on distributed network connectivity, and its perturbation in pathology.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Modelos Neurológicos , Modelos Teóricos , Rede Nervosa/fisiologia , Hemodinâmica , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia
2.
Neuroimage ; 60(1): 582-91, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22209811

RESUMO

Functional magnetic resonance imaging typically measures signal increases arising from changes in the transverse relaxation rate over small regions of the brain and associates these with local changes in cerebral blood flow, blood volume and oxygen metabolism. Recent developments in pulse sequences and image analysis methods have improved the specificity of the measurements by focussing on changes in blood flow or changes in blood volume alone. However, FMRI is still unable to match the physiological information obtainable from positron emission tomography (PET), which is capable of quantitative measurements of blood flow and volume, and can indirectly measure resting metabolism. The disadvantages of PET are its cost, its availability, its poor spatial resolution and its use of ionising radiation. The MRI techniques introduced here address some of these limitations and provide physiological data comparable with PET measurements. We present an 18-minute MRI protocol that produces multi-slice whole-brain coverage and yields quantitative images of resting cerebral blood flow, cerebral blood volume, oxygen extraction fraction, CMRO(2), arterial arrival time and cerebrovascular reactivity of the human brain in the absence of any specific functional task. The technique uses a combined hyperoxia and hypercapnia paradigm with a modified arterial spin labelling sequence.


Assuntos
Encéfalo/fisiologia , Imageamento por Ressonância Magnética/métodos , Respiração , Adulto , Encéfalo/irrigação sanguínea , Calibragem , Circulação Cerebrovascular , Feminino , Humanos , Masculino , Oxigênio/metabolismo , Fluxo Sanguíneo Regional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA