Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 19(10)2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-30274330

RESUMO

Imaging living cells by atomic force microscopy (AFM) promises not only high-resolution topographical data, but additionally, mechanical contrast, both of which are not obtainable with other microscopy techniques. Such imaging is however challenging, as cells need to be measured with low interaction forces to prevent either deformation or detachment from the surface. Off-resonance modes which periodically probe the surface have been shown to be advantageous, as they provide excellent force control combined with large amplitudes, which help reduce lateral force interactions. However, the low actuation frequency in traditional off-resonance techniques limits the imaging speed significantly. Using photothermal actuation, we probe the surface by directly actuating the cantilever. Due to the much smaller mass that needs to be actuated, the achievable measurement frequency is increased by two orders of magnitude. Additionally, photothermal off-resonance tapping (PORT) retains the precise force control of conventional off-resonance modes and is therefore well suited to gentle imaging. Here, we show how photothermal off-resonance tapping can be used to study live cells by AFM. As an example of imaging mammalian cells, the initial attachment, as well as long-term detachment, of human thrombocytes is presented. The membrane disrupting effect of the antimicrobial peptide CM-15 is shown on the cell wall of Escherichia coli. Finally, the dissolution of the cell wall of Bacillus subtilis by lysozyme is shown. Taken together, these evolutionarily disparate forms of life exemplify the usefulness of PORT for live cell imaging in a multitude of biological disciplines.


Assuntos
Imageamento Tridimensional , Luz , Microscopia de Força Atômica/métodos , Temperatura , Bacillus subtilis/citologia , Plaquetas/citologia , Adesão Celular , Sobrevivência Celular , Escherichia coli/citologia , Humanos , Muramidase/metabolismo , Imagem com Lapso de Tempo
2.
Adv Biol (Weinh) ; 6(4): e2101182, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34761567

RESUMO

OpenSPIM is an Open Access platform for Selective Plane Illumination Microscopy (SPIM) and allows hundreds of laboratories around the world to generate and process light-sheet data in a cost-effective way due to open-source hardware and software. While setting up a basic OpenSPIM configuration can be achieved expeditiously, correctly assembling and operating more complex OpenSPIM configurations can be challenging for routine standard OpenSPIM users. Detailed instructions on how to equip an OpenSPIM with two illumination sides and two detection axes (X-OpenSPIM) are provided, and a solution is also provided on how the temperature can be controlled in the sample chamber. Additionally, it is demonstrated how to operate it by implementing an ArduinoUNO microcontroller and introducing µOpenSPIM, a new software plugin for OpenSPIM, to facilitate image acquisition. The new software works on any OpenSPIM configuration comes with drift correction functionality, on-the-fly image processing, and gives users more options in the way time-lapse movies are initially set up and saved. Step-by-step guides are also provided within the Supporting Information and on the website on how to align the lasers, configure the hardware, and acquire images using µOpenSPIM. With this, current OpenSPIM users are empowered in various ways, and newcomers striving to use more advanced OpenSPIM systems are helped.


Assuntos
Processamento de Imagem Assistida por Computador , Software , Processamento de Imagem Assistida por Computador/métodos , Lasers , Microscopia de Fluorescência/métodos
3.
Nat Commun ; 12(1): 6180, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702818

RESUMO

Discovering mechanisms governing organelle assembly is a fundamental pursuit in biology. The centriole is an evolutionarily conserved organelle with a signature 9-fold symmetrical chiral arrangement of microtubules imparted onto the cilium it templates. The first structure in nascent centrioles is a cartwheel, which comprises stacked 9-fold symmetrical SAS-6 ring polymers emerging orthogonal to a surface surrounding each resident centriole. The mechanisms through which SAS-6 polymerization ensures centriole organelle architecture remain elusive. We deploy photothermally-actuated off-resonance tapping high-speed atomic force microscopy to decipher surface SAS-6 self-assembly mechanisms. We show that the surface shifts the reaction equilibrium by ~104 compared to solution. Moreover, coarse-grained molecular dynamics and atomic force microscopy reveal that the surface converts the inherent helical propensity of SAS-6 polymers into 9-fold rings with residual asymmetry, which may guide ring stacking and impart chiral features to centrioles and cilia. Overall, our work reveals fundamental design principles governing centriole assembly.


Assuntos
Proteínas de Ciclo Celular/química , Centríolos/química , Chlamydomonas reinhardtii/química , Cinética , Microscopia de Força Atômica , Modelos Químicos , Simulação de Dinâmica Molecular , Biogênese de Organelas , Conformação Proteica , Multimerização Proteica
4.
ACS Nano ; 15(11): 17613-17622, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34751034

RESUMO

Nanocharacterization plays a vital role in understanding the complex nanoscale organization of cells and organelles. Understanding cellular function requires high-resolution information about how the cellular structures evolve over time. A number of techniques exist to resolve static nanoscale structure of cells in great detail (super-resolution optical microscopy, EM, AFM). However, time-resolved imaging techniques tend to either have a lower resolution, are limited to small areas, or cause damage to the cells, thereby preventing long-term time-lapse studies. Scanning probe microscopy methods such as atomic force microscopy (AFM) combine high-resolution imaging with the ability to image living cells in physiological conditions. The mechanical contact between the tip and the sample, however, deforms the cell surface, disturbs the native state, and prohibits long-term time-lapse imaging. Here, we develop a scanning ion conductance microscope (SICM) for high-speed and long-term nanoscale imaging of eukaryotic cells. By utilizing advances in nanopositioning, nanopore fabrication, microelectronics, and controls engineering, we developed a microscopy method that can resolve spatiotemporally diverse three-dimensional (3D) processes on the cell membrane at sub-5-nm axial resolution. We tracked dynamic changes in live cell morphology with nanometer details and temporal ranges of subsecond to days, imaging diverse processes ranging from endocytosis, micropinocytosis, and mitosis to bacterial infection and cell differentiation in cancer cells. This technique enables a detailed look at membrane events and may offer insights into cell-cell interactions for infection, immunology, and cancer research.


Assuntos
Microscopia de Varredura por Sonda , Organelas , Microscopia de Varredura por Sonda/métodos , Microscopia de Força Atômica , Membrana Celular
5.
Beilstein J Nanotechnol ; 11: 1272-1279, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32953371

RESUMO

In this work, we report on the integration of an atomic force microscope (AFM) into a helium ion microscope (HIM). The HIM is a powerful instrument, capable of imaging and machining of nanoscale structures with sub-nanometer resolution, while the AFM is a well-established versatile tool for multiparametric nanoscale characterization. Combining the two techniques opens the way for unprecedented in situ correlative analysis at the nanoscale. Nanomachining and analysis can be performed without contamination of the sample and environmental changes between processing steps. The practicality of the resulting tool lies in the complementarity of the two techniques. The AFM offers not only true 3D topography maps, something the HIM can only provide in an indirect way, but also allows for nanomechanical property mapping, as well as for electrical and magnetic characterization of the sample after focused ion beam materials modification with the HIM. The experimental setup is described and evaluated through a series of correlative experiments, demonstrating the feasibility of the integration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA