RESUMO
Capillary malformations are slow-flow vascular malformations that affect the microcirculation including capillaries and post capillary venules and can be associated with growth differences. Specifically, the association of capillary malformations with undergrowth is a vastly understudied vascular syndrome with few reports of genetic causes including PIK3CA, GNAQ, and GNA11. Recently, a somatic pathogenic variant in AKT3 was identified in one child with a cutaneous vascular syndrome similar to cutis marmorata telangiectatica congenita, undergrowth, and no neurodevelopmental features. Here, we present a male patient with a capillary malformation and undergrowth due to a somatic pathogenic variant in AKT3 to confirm this association. It is essential to consider that mosaic pathogenic variants in AKT3 can cause a wide spectrum of disease. There is a need for future studies focusing on capillary malformations with undergrowth to understand the underlying mechanism.
Assuntos
Livedo Reticular , Telangiectasia , Malformações Vasculares , Criança , Humanos , Masculino , Capilares/anormalidades , Malformações Vasculares/diagnóstico , Malformações Vasculares/genética , Telangiectasia/genética , Síndrome , Mutação , Proteínas Proto-Oncogênicas c-akt/genéticaRESUMO
Cornelia de Lange syndrome (CdLS) is an autosomal dominant genetic disorder caused by pathogenic variants in NIPBL, RAD21, SMC3, HDAC8, or SMC1A; all of which code for proteins that are components of, or interact with, the cohesin complex. Despite the identification of multiple genes associated with CdLS, over 25% of individuals strongly suspected to have CdLS have negative genetic testing, indicating that there are additional genes associated with the condition. HDAC2 codes for histone deacetylase 2 (HDAC2) and, like HDAC8, is a Class 1 histone deacetylase. We present a patient with a novel de novo variant in HDAC2 with many clinical features consistent with CdLS including severe developmental delay, limb abnormalities, congenital heart defect, cryptorchidism and hypoplastic genitalia, growth retardation, and characteristic craniofacial features. Although variants in HDAC2 are not currently associated with human disease, the variant identified in this patient is within a highly conserved amino acid residue and has not been observed in healthy populations. This information, along with the patient's clinical presentation and the functional similarity between the HDAC2 and HDAC8 proteins, suggests that HDAC2 should be further investigated as a candidate gene for CdLS or a CdLS-like syndrome.
Assuntos
Síndrome de Cornélia de Lange/diagnóstico , Síndrome de Cornélia de Lange/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Histona Desacetilase 2/genética , Fenótipo , Pré-Escolar , Fácies , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Mutação , RadiografiaRESUMO
Duplications in the 22q11.2 region can cause 22q11.2 duplication syndrome and encompass a variety of phenotypes including developmental delays, facial abnormalities, cardiovascular defects, central nervous system delays, and other congenital abnormalities. However, the contribution of these contiguous duplicated regions to the clinical phenotypes has not been fully elucidated. In this study, we identified nine patients carrying different 22q11.2 microduplications detected by chromosomal microarray. Of these patients, seven pediatric patients presented with various clinical features including two neonate cases died shortly after birth, and two healthy adults. We examined region specific genotype-phenotype associations and found unpredictability associated with 22q11.2 duplications in these nine patients.
Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Duplicação Cromossômica/genética , Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Adulto , Variação Biológica da População , Aberrações Cromossômicas , Cromossomos Humanos Par 22/genética , Hibridização Genômica Comparativa , Feminino , Estudos de Associação Genética/métodos , Humanos , Lactente , Masculino , FenótipoRESUMO
PURPOSE: Genetic counselors (GCs) increasingly play key roles in advancing genomic medicine through innovative research. Here, we examine one large cohort of GCs' evolving contributions to the literature, with the goal of facilitating worldwide professional development for GCs through scholarly activities. METHODS: Publications were cataloged by members of the Section of Genetic Counseling (Section), established at the Children's Hospital of Philadelphia and the University of Pennsylvania in 2014, including publication year, journal, impact factor, and author position. Data were organized using the "My Bibliography" tool on the National Center for Biotechnology Information website and a Research Electronic Data Capture database created to initially collect manuscripts published through 30 June 2020. A subsequent survey captured publications through 5 February 2024. RESULTS: An amount of 52 of 120 (43%) GCs shared their curriculum vitae/papers. 992 unique publications were identified from 1986 to 2024. Since 2013, no less than 32 papers were published annually by Section members and no less than 10 GCs contributed to publications yearly. Impact factors typically averaged >5.0 per year. Areas of foci diversified considerably since 2015. CONCLUSIONS: Here, we establish that GCs indeed contribute to scholarly work as evidenced by the number of publications alone. The establishment of an academic home may have contributed, given publications increased concurrent to launching the Section, providing a model for organizing GCs at institutions nationally and internationally. Highlighting such achievements will foster the expansion of GC roles in the era of precision genomic medicine and therapy. Considering ways to support GCs towards expanding these activities is equally important.
Assuntos
Aconselhamento Genético , Humanos , Conselheiros , Fator de Impacto de RevistasRESUMO
Vascular anomalies are malformations or tumors of the blood or lymphatic vasculature and can be life-threatening. Although molecularly targeted therapies can be life-saving, identification of the molecular etiology is often impeded by lack of accessibility to affected tissue samples, mosaicism or insufficient sequencing depth. In a cohort of 356 participants with vascular anomalies, including 104 with primary complex lymphatic anomalies (pCLAs), DNA from CD31+ cells isolated from lymphatic fluid or cell-free DNA from lymphatic fluid or plasma underwent ultra-deep sequencing thereby uncovering pathogenic somatic variants down to a variant allele fraction of 0.15%. A molecular diagnosis, including previously undescribed genetic causes, was obtained in 41% of participants with pCLAs and 72% of participants with other vascular malformations, leading to a new medical therapy for 63% (43/69) of participants and resulting in improvement in 63% (35/55) of participants on therapy. Taken together, these data support the development of liquid biopsy-based diagnostic techniques to identify previously undescribed genotype-phenotype associations and guide medical therapy in individuals with vascular anomalies.
Assuntos
Anormalidades Linfáticas , Malformações Vasculares , Humanos , Mutação , Testes Genéticos/métodos , Malformações Vasculares/diagnóstico , Malformações Vasculares/genética , Malformações Vasculares/terapia , Alelos , Anormalidades Linfáticas/genética , GenômicaRESUMO
Patients with chromosome 22q11.2 deletion syndromes classically present with variable cardiac defects, parathyroid and thyroid gland hypoplasia, immunodeficiency and velopharyngeal insufficiency, developmental delay, intellectual disability, cognitive impairment, and psychiatric disorders. New technologies including chromosome microarray have identified smaller deletions in the 22q11.2 region. An increasing number of studies have reported patients presenting with various features harboring smaller 22q11.2 deletions, suggesting a need to better elucidate 22q11.2 deletions and their phenotypic contributions so that clinicians may better guide prognosis for families. We identified 16 pediatric patients at our institution harboring various 22q11.2 deletions detected by chromosomal microarray and report their clinical presentations. Findings include various neurodevelopmental delays with the most common one being attention deficit hyperactivity disorder (ADHD), one reported case of infant lethality, four cases of preterm birth, one case with dual diagnoses of 22q11.2 microdeletion and Down syndrome. We examined potential genotypic contributions of the deleted regions.