Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(2): e2211977120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595694

RESUMO

Engineered microbes for the delivery of biologics are a promising avenue for the treatment of various conditions such as chronic inflammatory disorders and metabolic disease. In this study, we developed a genetically engineered probiotic delivery system that delivers a peptide to the intestinal tract with high efficacy. We constructed an inducible system in the probiotic Lactobacillus reuteri to secrete the Kv1.3 potassium blocker ShK-235 (LrS235). We show that LrS235 culture supernatants block Kv1.3 currents and preferentially inhibit human T effector memory (TEM) lymphocyte proliferation in vitro. A single oral gavage of healthy rats with LrS235 resulted in sufficient functional ShK-235 in the circulation to reduce inflammation in a delayed-type hypersensitivity model of atopic dermatitis mediated by TEM cells. Furthermore, the daily oral gavage of LrS235 dramatically reduced clinical signs of disease and joint inflammation in rats with a model of rheumatoid arthritis without eliciting immunogenicity against ShK-235. This work demonstrates the efficacy of using the probiotic L. reuteri as a novel oral delivery platform for the peptide ShK-235 and provides an efficacious strategy to deliver other biologics with great translational potential.


Assuntos
Artrite Reumatoide , Probióticos , Ratos , Humanos , Animais , Canal de Potássio Kv1.3/genética , Canal de Potássio Kv1.3/metabolismo , Peptídeos/metabolismo , Artrite Reumatoide/tratamento farmacológico , Inflamação/tratamento farmacológico , Probióticos/uso terapêutico , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/uso terapêutico
2.
Proc Natl Acad Sci U S A ; 119(18): e2119396119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35476524

RESUMO

Combatting Clostridioides difficile infections, a dominant cause of hospital-associated infections with incidence and resulting deaths increasing worldwide, is complicated by the frequent emergence of new virulent strains. Here, we employ whole-genome sequencing, high-throughput phenotypic screenings, and genome-scale models of metabolism to evaluate the genetic diversity of 451 strains of C. difficile. Constructing the C. difficile pangenome based on this set revealed 9,924 distinct gene clusters, of which 2,899 (29%) are defined as core, 2,968 (30%) are defined as unique, and the remaining 4,057 (41%) are defined as accessory. We develop a strain typing method, sequence typing by accessory genome (STAG), that identifies 176 genetically distinct groups of strains and allows for explicit interrogation of accessory gene content. Thirty-five strains representative of the overall set were experimentally profiled on 95 different nutrient sources, revealing 26 distinct growth profiles and unique nutrient preferences; 451 strain-specific genome scale models of metabolism were constructed, allowing us to computationally probe phenotypic diversity in 28,864 unique conditions. The models create a mechanistic link between the observed phenotypes and strain-specific genetic differences and exhibit an ability to correctly predict growth in 76% of measured cases. The typing and model predictions are used to identify and contextualize discriminating genetic features and phenotypes that may contribute to the emergence of new problematic strains.


Assuntos
Clostridioides difficile , Infecção Hospitalar , Clostridioides , Clostridioides difficile/genética , Variação Genética , Humanos , Biologia de Sistemas
3.
Proteomics ; : e2400078, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38824665

RESUMO

The human gut microbiome plays a vital role in preserving individual health and is intricately involved in essential functions. Imbalances or dysbiosis within the microbiome can significantly impact human health and are associated with many diseases. Several metaproteomics platforms are currently available to study microbial proteins within complex microbial communities. In this study, we attempted to develop an integrated pipeline to provide deeper insights into both the taxonomic and functional aspects of the cultivated human gut microbiomes derived from clinical colon biopsies. We combined a rapid peptide search by MSFragger against the Unified Human Gastrointestinal Protein database and the taxonomic and functional analyses with Unipept Desktop and MetaLab-MAG. Across seven samples, we identified and matched nearly 36,000 unique peptides to approximately 300 species and 11 phyla. Unipept Desktop provided gene ontology, InterPro entries, and enzyme commission number annotations, facilitating the identification of relevant metabolic pathways. MetaLab-MAG contributed functional annotations through Clusters of Orthologous Genes and Non-supervised Orthologous Groups categories. These results unveiled functional similarities and differences among the samples. This integrated pipeline holds the potential to provide deeper insights into the taxonomy and functions of the human gut microbiome for interrogating the intricate connections between microbiome balance and diseases.

4.
Nucleic Acids Res ; 50(19): 10801-10816, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-35141754

RESUMO

RbgA is an essential protein for the assembly of the 50S subunit in Bacillus subtilis. Depletion of RbgA leads to the accumulation of the 45S intermediate. A strain expressing a RbgA variant with reduced GTPase activity generates spontaneous suppressor mutations in uL6. Each suppressor strain accumulates a unique 44S intermediate. We reasoned that characterizing the structure of these mutant 44S intermediates may explain why RbgA is required to catalyze the folding of the 50S functional sites. We found that in the 44S particles, rRNA helices H42 and H97, near the binding site of uL6, adopt a flexible conformation and allow the central protuberance and functional sites in the mutant 44S particles to mature in any order. Instead, the wild-type 45S particles exhibit a stable H42-H97 interaction and their functional sites always mature last. The dependence on RbgA was also less pronounced in the 44S particles. We concluded that the binding of uL6 pauses the maturation of the functional sites, but the central protuberance continues to fold. RbgA exclusively binds intermediates with a formed central protuberance and licenses the folding of the functional sites. Through this mechanism, RbgA ensures that the functional sites of the 50S mature last.


Ribosomal subunits in bacteria assemble according to energy landscapes comprised of multiple parallel pathways. In this study, the authors identified a critical maturation step in the late assembly stages of the large 50S ribosomal subunit in bacteria. This step represents a merging point where all parallel assembly pathways of the ribosomal particles converge. At this critical step, the convergent assembly intermediate that accumulates in cells exists in a 'locked' state, and its maturation is paused. The RbgA protein acts on this critical step to 'unlock' the last maturation steps involving folding of the functional sites. Through this mechanism, RbgA ensures that the functional sites of the 50S mature last.


Assuntos
Proteínas Ribossômicas , Subunidades Ribossômicas Maiores de Bactérias , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Proteínas Ribossômicas/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , RNA Ribossômico/metabolismo , GTP Fosfo-Hidrolases/metabolismo
5.
Gastroenterology ; 160(2): 614-623, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33307023

RESUMO

The notion of probiotics as microbes that confer health benefits has its origins in the speculative ideas that are more than a century old, yet remain largely unsubstantiated by scientific evidence. The recent advances in microbiome science have highlighted the importance of intestinal microbes in human physiology and disease pathogenesis. These developments have provided a boost to the probiotics industry, which continues to experience exponential growth driven mainly by creative marketing. Consumers, patients, and most health care providers are not able to discern the underlying science or differentiate the permitted claims that promise vague health benefits from disease-specific claims reserved for drugs. No probiotic product has been able to satisfy the regulatory requirements to be categorized as a drug, a substance intended to cure, mitigate, or prevent disease. However, patients take probiotic products in the belief that they will help to treat their intestinal or systemic diseases. Thus far, the regulators have failed to create policies that would assist to inform the public in this area. In fact, the existing regulatory regime actually creates formidable barriers to research that could provide evidence for clinical efficacy of probiotic products. We propose a potential solution to this vexing problem, where a committee created through a partnership of academia, professional organizations, and industry, but free of potential conflicts of interest, would be charged with rigorous evaluation of specific probiotic products and the evidence in support of their different claims. Companies that would submit to this process would earn the trust of consumers and healthcare providers, as well as a distinction in the marketplace.


Assuntos
Pesquisa Biomédica , Microbioma Gastrointestinal/efeitos dos fármacos , Legislação de Medicamentos , Probióticos , Pesquisa Biomédica/economia , Pesquisa Biomédica/legislação & jurisprudência , Suplementos Nutricionais/normas , Indústria Farmacêutica/economia , Indústria Farmacêutica/legislação & jurisprudência , Microbioma Gastrointestinal/fisiologia , Humanos , Legislação de Medicamentos/economia , Legislação de Medicamentos/normas , Probióticos/farmacologia , Probióticos/normas , Probióticos/uso terapêutico
6.
Gastroenterology ; 160(4): 1301-1314.e8, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33227279

RESUMO

BACKGROUND & AIMS: Although Clostridioides difficile infection (CDI) is known to involve the disruption of the gut microbiota, little is understood regarding how mucus-associated microbes interact with C difficile. We hypothesized that select mucus-associated bacteria would promote C difficile colonization and biofilm formation. METHODS: To create a model of the human intestinal mucus layer and gut microbiota, we used bioreactors inoculated with healthy human feces, treated with clindamycin and infected with C difficile with the addition of human MUC2-coated coverslips. RESULTS: C difficile was found to colonize and form biofilms on MUC2-coated coverslips, and 16S rRNA sequencing showed a unique biofilm profile with substantial cocolonization with Fusobacterium species. Consistent with our bioreactor data, publicly available data sets and patient stool samples showed that a subset of patients with C difficile infection harbored high levels of Fusobacterium species. We observed colocalization of C difficile and F nucleatum in an aggregation assay using adult patients and stool of pediatric patients with inflammatory bowel disease and in tissue sections of patients with CDI. C difficile strains were found to coaggregate with F nucleatum subspecies in vitro; an effect that was inhibited by blocking or mutating the adhesin RadD on Fusobacterium and removal of flagella on C difficile. Aggregation was shown to be unique between F nucleatum and C difficile, because other gut commensals did not aggregate with C difficile. Addition of F nucleatum also enhanced C difficile biofilm formation and extracellular polysaccharide production. CONCLUSIONS: Collectively, these data show a unique interaction of between pathogenic C difficile and F nucleatum in the intestinal mucus layer.


Assuntos
Adesinas Bacterianas/metabolismo , Clostridioides difficile/patogenicidade , Infecções por Clostridium/imunologia , Fusobacterium nucleatum/imunologia , Microbioma Gastrointestinal/imunologia , Adesinas Bacterianas/genética , Aderência Bacteriana/imunologia , Biofilmes , Reatores Biológicos/microbiologia , Clostridioides difficile/genética , Clostridioides difficile/imunologia , Clostridioides difficile/metabolismo , Infecções por Clostridium/microbiologia , Fezes/microbiologia , Flagelos/genética , Flagelos/metabolismo , Fusobacterium nucleatum/metabolismo , Células HT29 , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Mucina-2/metabolismo
7.
Physiol Genomics ; 53(11): 486-508, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34612061

RESUMO

Human intestinal epithelial organoids (enteroids and colonoids) are tissue cultures used for understanding the physiology of the human intestinal epithelium. Here, we explored the effect on the transcriptome of common variations in culture methods, including extracellular matrix substrate, format, tissue segment, differentiation status, and patient heterogeneity. RNA-sequencing datasets from 276 experiments performed on 37 human enteroid and colonoid lines from 29 patients were aggregated from several groups in the Texas Medical Center. DESeq2 and gene set enrichment analysis (GSEA) were used to identify differentially expressed genes and enriched pathways. PERMANOVA, Pearson's correlation, and dendrogram analysis of the data originally indicated three tiers of influence of culture methods on transcriptomic variation: substrate (collagen vs. Matrigel) and format (3-D, transwell, and monolayer) had the largest effect; segment of origin (duodenum, jejunum, ileum, colon) and differentiation status had a moderate effect; and patient heterogeneity and specific experimental manipulations (e.g., pathogen infection) had the smallest effect. GSEA identified hundreds of pathways that varied between culture methods, such as IL1 cytokine signaling enriched in transwell versus monolayer cultures and E2F target genes enriched in collagen versus Matrigel cultures. The transcriptional influence of the format was furthermore validated in a synchronized experiment performed with various format-substrate combinations. Surprisingly, large differences in organoid transcriptome were driven by variations in culture methods such as format, whereas experimental manipulations such as infection had modest effects. These results show that common variations in culture conditions can have large effects on intestinal organoids and should be accounted for when designing experiments and comparing results between laboratories. Our data constitute the largest RNA-seq dataset interrogating human intestinal epithelial organoids.


Assuntos
Técnicas de Cultura de Células/métodos , Colo/metabolismo , Meios de Cultura/farmacologia , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Organoides/metabolismo , Transcriptoma/efeitos dos fármacos , Calcitriol/farmacologia , Colágeno/metabolismo , Colágeno/farmacologia , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Meios de Cultura/química , Combinação de Medicamentos , Escherichia coli , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Laminina/metabolismo , Laminina/farmacologia , Organoides/virologia , Proteoglicanas/metabolismo , Proteoglicanas/farmacologia , RNA-Seq/métodos , Transcriptoma/genética , Viroses/metabolismo , Viroses/virologia , Vírus
8.
BMC Microbiol ; 21(1): 154, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34030655

RESUMO

BACKGROUND: Bifidobacteria are commensal microbes of the mammalian gastrointestinal tract. In this study, we aimed to identify the intestinal colonization mechanisms and key metabolic pathways implemented by Bifidobacterium dentium. RESULTS: B. dentium displayed acid resistance, with high viability over a pH range from 4 to 7; findings that correlated to the expression of Na+/H+ antiporters within the B. dentium genome. B. dentium was found to adhere to human MUC2+ mucus and harbor mucin-binding proteins. Using microbial phenotyping microarrays and fully-defined media, we demonstrated that in the absence of glucose, B. dentium could metabolize a variety of nutrient sources. Many of these nutrient sources were plant-based, suggesting that B. dentium can consume dietary substances. In contrast to other bifidobacteria, B. dentium was largely unable to grow on compounds found in human mucus; a finding that was supported by its glycosyl hydrolase (GH) profile. Of the proteins identified in B. dentium by proteomic analysis, a large cohort of proteins were associated with diverse metabolic pathways, indicating metabolic plasticity which supports colonization of the dynamic gastrointestinal environment. CONCLUSIONS: Taken together, we conclude that B. dentium is well adapted for commensalism in the gastrointestinal tract.


Assuntos
Bifidobacterium/metabolismo , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Ácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bifidobacterium/genética , Bifidobacterium/crescimento & desenvolvimento , Trato Gastrointestinal/fisiologia , Genoma Bacteriano , Glucose/metabolismo , Humanos , Simbiose
9.
Nucleic Acids Res ; 47(19): 10414-10425, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31665744

RESUMO

Bacteria harbor a number GTPases that function in the assembly of the ribosome and are essential for growth. RbgA is one of these GTPases and is required for the assembly of the 50S subunit in most bacteria. Homologs of this protein are also implicated in the assembly of the large subunit of the mitochondrial and eukaryotic ribosome. We present here the cryo-electron microscopy structure of RbgA bound to a Bacillus subtilis 50S subunit assembly intermediate (45SRbgA particle) that accumulates in cells upon RbgA depletion. Binding of RbgA at the P site of the immature particle stabilizes functionally important rRNA helices in the A and P-sites, prior to the completion of the maturation process of the subunit. The structure also reveals the location of the highly conserved N-terminal end of RbgA containing the catalytic residue Histidine 9. The derived model supports a mechanism of GTP hydrolysis, and it shows that upon interaction of RbgA with the 45SRbgA particle, Histidine 9 positions itself near the nucleotide potentially acting as the catalytic residue with minimal rearrangements. This structure represents the first visualization of the conformational changes induced by an assembly factor in a bacterial subunit intermediate.


Assuntos
GTP Fosfo-Hidrolases/química , RNA Ribossômico/química , Proteínas Ribossômicas/química , Bacillus subtilis/química , Bacillus subtilis/genética , Microscopia Crioeletrônica , GTP Fosfo-Hidrolases/ultraestrutura , Hidrólise , Modelos Moleculares , Conformação Proteica , RNA Ribossômico/genética , RNA Ribossômico/ultraestrutura , Proteínas Ribossômicas/ultraestrutura , Subunidades Ribossômicas Maiores de Bactérias/química , Subunidades Ribossômicas Maiores de Bactérias/genética , Subunidades Ribossômicas Maiores de Bactérias/ultraestrutura , Ribossomos/genética , Ribossomos/ultraestrutura
10.
Nucleic Acids Res ; 47(15): 8301-8317, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31265110

RESUMO

Assembly factors provide speed and directionality to the maturation process of the 30S subunit in bacteria. To gain a more precise understanding of how these proteins mediate 30S maturation, it is important to expand on studies of 30S assembly intermediates purified from bacterial strains lacking particular maturation factors. To reveal the role of the essential protein Era in the assembly of the 30S ribosomal subunit, we analyzed assembly intermediates that accumulated in Era-depleted Escherichia coli cells using quantitative mass spectrometry, high resolution cryo-electron microscopy and in-cell footprinting. Our combined approach allowed for visualization of the small subunit as it assembled and revealed that with the exception of key helices in the platform domain, all other 16S rRNA domains fold even in the absence of Era. Notably, the maturing particles did not stall while waiting for the platform domain to mature and instead re-routed their folding pathway to enable concerted maturation of other structural motifs spanning multiple rRNA domains. We also found that binding of Era to the mature 30S subunit destabilized helix 44 and the decoding center preventing binding of YjeQ, another assembly factor. This work establishes Era's role in ribosome assembly and suggests new roles in maintaining ribosome homeostasis.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Homeostase , RNA Ribossômico 16S/metabolismo , Proteínas de Ligação a RNA/metabolismo , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Subunidades Ribossômicas Menores/metabolismo , Sequência de Bases , Sítios de Ligação , Microscopia Crioeletrônica , Proteínas de Escherichia coli/genética , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/genética , Conformação de Ácido Nucleico , Ligação Proteica , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , Proteínas de Ligação a RNA/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Menores/genética , Subunidades Ribossômicas Menores/ultraestrutura , Subunidades Ribossômicas Menores de Bactérias/genética , Subunidades Ribossômicas Menores de Bactérias/ultraestrutura
11.
J Physiol ; 598(15): 3085-3105, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32428244

RESUMO

KEY POINTS: Enteroids are a physiologically relevant model to examine the human intestine and its functions. Previously, the measurable cytokine response of human intestinal enteroids has been limited following exposure to host or microbial pro-inflammatory stimuli. Modifications to enteroid culture conditions facilitated robust human cytokine responses to pro-inflammatory stimuli. This new human enteroid culture methodology refines the ability to study microbiome:human intestinal epithelium interactions in the laboratory. ABSTRACT: The intestinal epithelium is the primary interface between the host, the gut microbiome and its external environment. Since the intestinal epithelium contributes to innate immunity as a first line of defence, understanding how the epithelium responds to microbial and host stimuli is an important consideration in promoting homeostasis. Human intestinal enteroids (HIEs) are primary epithelial cell cultures that can provide insights into the biology of the intestinal epithelium and innate immune responses. One potential limitation of using HIEs for innate immune studies is the relative lack of responsiveness to factors that stimulate epithelial cytokine production. We report technical refinements, including removal of extracellular antioxidants, to facilitate enhanced cytokine responses in HIEs. Using this new method, we demonstrate that HIEs have distinct cytokine profiles in response to pro-inflammatory stimuli derived from host and microbial sources. Overall, we found that host-derived cytokines tumour necrosis factor and interleukin-1α stimulated reactive oxygen species and a large repertoire of cytokines. In contrast, microbial lipopolysaccharide, lipoteichoic acid and flagellin stimulated a limited number of cytokines and histamine did not stimulate the release of any cytokines. Importantly, HIE-secreted cytokines were functionally active, as denoted by the ability of human blood-derived neutrophil to migrate towards HIE supernatant containing interleukin-8. These findings establish that the immune responsiveness of HIEs depends on medium composition and stimuli. By refining the experimental culture medium and creating an environment conducive to epithelial cytokine responses by human enteroids, HIEs can facilitate exploration of many experimental questions pertaining to the role of the intestinal epithelium in innate immunity.


Assuntos
Mucosa Intestinal , Jejuno , Células Epiteliais , Humanos , Imunidade Inata , Intestinos
12.
Am J Physiol Gastrointest Liver Physiol ; 318(5): G870-G888, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32223302

RESUMO

Clostridioides difficile is an important nosocomial pathogen that produces toxins to cause life-threatening diarrhea and colitis. Toxins bind to epithelial receptors and promote the collapse of the actin cytoskeleton. C. difficile toxin activity is commonly studied in cancer-derived and immortalized cell lines. However, the biological relevance of these models is limited. Moreover, no model is available for examining C. difficile-induced enteritis, an understudied health problem. We hypothesized that human intestinal enteroids (HIEs) express toxin receptors and provide a new model to dissect C. difficile cytotoxicity in the small intestine. We generated biopsy-derived jejunal HIE and Vero cells, which stably express LifeAct-Ruby, a fluorescent label of F-actin, to monitor actin cytoskeleton rearrangement by live-cell microscopy. Imaging analysis revealed that toxins from pathogenic C. difficile strains elicited cell rounding in a strain-dependent manner, and HIEs were tenfold more sensitive to toxin A (TcdA) than toxin B (TcdB). By quantitative PCR, we paradoxically found that HIEs expressed greater quantities of toxin receptor mRNA and yet exhibited decreased sensitivity to toxins when compared with traditionally used cell lines. We reasoned that these differences may be explained by components, such as mucins, that are present in HIEs cultures, that are absent in immortalized cell lines. Addition of human-derived mucin 2 (MUC2) to Vero cells delayed cell rounding, indicating that mucus serves as a barrier to toxin-receptor binding. This work highlights that investigation of C. difficile infection in that HIEs can provide important insights into the intricate interactions between toxins and the human intestinal epithelium.NEW & NOTEWORTHY In this article, we developed a novel model of Clostridioides difficile-induced enteritis using jejunal-derived human intestinal enteroids (HIEs) transduced with fluorescently tagged F-actin. Using live-imaging, we identified that jejunal HIEs express high levels of TcdA and CDT receptors, are more sensitive to TcdA than TcdB, and secrete mucus, which delays toxin-epithelial interactions. This work also optimizes optically clear C. difficile-conditioned media suitable for live-cell imaging.


Assuntos
Clostridioides difficile/patogenicidade , Infecções por Clostridium/microbiologia , Enterite/microbiologia , Jejuno/microbiologia , ADP Ribose Transferases/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/microbiologia , Citoesqueleto de Actina/ultraestrutura , Animais , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Forma Celular , Chlorocebus aethiops , Clostridioides difficile/metabolismo , Infecções por Clostridium/metabolismo , Infecções por Clostridium/patologia , Enterite/metabolismo , Enterite/patologia , Enterotoxinas/metabolismo , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Jejuno/metabolismo , Jejuno/ultraestrutura , Mucina-2/metabolismo , Organoides , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Fatores de Tempo , Células Vero , Virulência
14.
Nucleic Acids Res ; 45(3): 1027-1040, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28180306

RESUMO

Cryo-electron microscopy (cryo-EM) had played a central role in the study of ribosome structure and the process of translation in bacteria since the development of this technique in the mid 1980s. Until recently cryo-EM structures were limited to ∼10 Šin the best cases. However, the recent advent of direct electron detectors has greatly improved the resolution of cryo-EM structures to the point where atomic resolution is now achievable. This improved resolution will allow cryo-EM to make groundbreaking contributions in essential aspects of ribosome biology, including the assembly process. In this review, we summarize important insights that cryo-EM, in combination with chemical and genetic approaches, has already brought to our current understanding of the ribosomal assembly process in bacteria using previous detector technology. More importantly, we discuss how the higher resolution structures now attainable with direct electron detectors can be leveraged to propose precise testable models regarding this process. These structures will provide an effective platform to develop new antibiotics that target this fundamental cellular process.


Assuntos
Bactérias/ultraestrutura , Microscopia Crioeletrônica/métodos , Ribossomos/ultraestrutura , Bactérias/química , Bactérias/genética , Modelos Moleculares , Multimerização Proteica , Proteínas Ribossômicas/química , Subunidades Ribossômicas/química , Subunidades Ribossômicas/genética , Subunidades Ribossômicas/ultraestrutura , Ribossomos/química , Ribossomos/genética
15.
Mol Syst Biol ; 13(4): 923, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28373240

RESUMO

There is a groundswell of interest in using genetically engineered sensor bacteria to study gut microbiota pathways, and diagnose or treat associated diseases. Here, we computationally identify the first biological thiosulfate sensor and an improved tetrathionate sensor, both two-component systems from marine Shewanella species, and validate them in laboratory Escherichia coli Then, we port these sensors into a gut-adapted probiotic E. coli strain, and develop a method based upon oral gavage and flow cytometry of colon and fecal samples to demonstrate that colon inflammation (colitis) activates the thiosulfate sensor in mice harboring native gut microbiota. Our thiosulfate sensor may have applications in bacterial diagnostics or therapeutics. Finally, our approach can be replicated for a wide range of bacterial sensors and should thus enable a new class of minimally invasive studies of gut microbiota pathways.


Assuntos
Proteínas de Bactérias/metabolismo , Colite/microbiologia , Ácido Tetratiônico/análise , Tiossulfatos/análise , Animais , Técnicas Biossensoriais , Colite/induzido quimicamente , Colite/diagnóstico , Colo/microbiologia , Modelos Animais de Doenças , Fezes/microbiologia , Microbioma Gastrointestinal , Camundongos , Shewanella/metabolismo , Dodecilsulfato de Sódio/efeitos adversos , Biologia de Sistemas/métodos
16.
J Autoimmun ; 93: 45-56, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29934134

RESUMO

CD25 knock-out (CD25KO) mice spontaneously develop Sjögren Syndrome (SS)-like inflammation. We investigated the role of commensal bacteria by comparing CD25KO mice housed in conventional or germ-free conditions. Germ-free CD25KO mice have greater corneal barrier dysfunction, lower goblet cell density, increased total lymphocytic infiltration score, increased expression of IFN-γ, IL-12 and higher a frequency of CD4+IFN-γ+ cells than conventional mice. CD4+ T cells isolated from female germ-free CD25KO mice adoptively transferred to naive immunodeficient RAG1KO recipients caused more severe Sjögren-like disease than CD4+ T cells transferred from conventional CD25KO mice. Fecal transplant in germ-free CD25KO mice reversed the spontaneous dry eye phenotype and decreased the generation of pathogenic CD4+IFN-γ+ cells. Our studies indicate that lack of commensal bacteria accelerates the onset and severity of dacryoadenitis and generates autoreactive CD4+T cells with greater pathogenicity in the CD25KO model, suggesting that the commensal bacteria or their metabolites products have immunoregulatory properties that protect exocrine glands in the CD25KO SS model.


Assuntos
Córnea/imunologia , Dacriocistite/microbiologia , Proteínas de Homeodomínio/imunologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Aparelho Lacrimal/imunologia , Síndrome de Sjogren/microbiologia , Simbiose/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Córnea/patologia , Dacriocistite/genética , Dacriocistite/imunologia , Dacriocistite/patologia , Modelos Animais de Doenças , Transplante de Microbiota Fecal , Feminino , Microbioma Gastrointestinal/imunologia , Regulação da Expressão Gênica , Vida Livre de Germes , Células Caliciformes/imunologia , Células Caliciformes/patologia , Proteínas de Homeodomínio/genética , Interferon gama/genética , Interferon gama/imunologia , Interleucina-12/genética , Interleucina-12/imunologia , Subunidade alfa de Receptor de Interleucina-2/deficiência , Subunidade alfa de Receptor de Interleucina-2/genética , Aparelho Lacrimal/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Permeabilidade , Síndrome de Sjogren/genética , Síndrome de Sjogren/imunologia , Síndrome de Sjogren/patologia
17.
Microb Cell Fact ; 17(1): 138, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30176942

RESUMO

BACKGROUND: Lactic acid bacteria (LAB) are one of the microorganisms of choice for the development of protein delivery systems for therapeutic purposes. Although there are numerous tools to facilitate genome engineering of lactobacilli; transformation efficiency still limits the ability to engineer their genomes. While genetically manipulating Lactobacillus reuteri ATCC PTA 6475 (LR 6475), we noticed that after an initial transformation, several LR 6475 strains significantly improved their ability to take up plasmid DNA via electroporation. Our goal was to understand the molecular basis for how these strains acquired the ability to increase transformation efficiency. RESULTS: Strains generated after transformation of plasmids pJP067 and pJP042 increased their ability to transform plasmid DNA about one million fold for pJP067, 100-fold for pSIP411 and tenfold for pNZ8048. Upon sequencing of the whole genome from these strains, we identified several genomic mutations and rearrangements, with all strains containing mutations in the transformation related gene A (trgA). To evaluate the role of trgA in transformation of DNA, we generated a trgA null that improved the transformation efficiency of LR 6475 to transform pSIP411 and pJP067 by at least 100-fold, demonstrating that trgA significantly impairs the ability of LR 6475 to take-up plasmid DNA. We also identified genomic rearrangements located in and around two prophages inserted in the LR 6475 genome that included deletions, insertions and an inversion of 336 Kb. A second group of rearrangements was observed in a Type I restriction modification system, in which the specificity subunits underwent several rearrangements in the target recognition domain. Despite the magnitude of these rearrangements in the prophage genomes and restriction modification systems, none of these genomic changes impacted transformation efficiency to the level induced by trgA. CONCLUSIONS: Our findings demonstrate how genetic manipulation of LR 6475 with plasmid DNA leads to genomic changes that improve their ability to transform plasmid DNA; highlighting trgA as the primary driver of this phenotype. Additionally, this study also underlines the importance of characterizing genetic changes that take place after genome engineering of strains for therapeutic purposes.


Assuntos
Engenharia Genética/métodos , Genômica/métodos , Limosilactobacillus reuteri/genética
18.
Nucleic Acids Res ; 44(17): 8442-55, 2016 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-27484475

RESUMO

YphC and YsxC are GTPases in Bacillus subtilis that facilitate the assembly of the 50S ribosomal subunit, however their roles in this process are still uncharacterized. To explore their function, we used strains in which the only copy of the yphC or ysxC genes were under the control of an inducible promoter. Under depletion conditions, they accumulated incomplete ribosomal subunits that we named 45SYphC and 44.5SYsxC particles. Quantitative mass spectrometry analysis and the 5-6 Å resolution cryo-EM maps of the 45SYphC and 44.5SYsxC particles revealed that the two GTPases participate in the maturation of the central protuberance, GTPase associated region and key RNA helices in the A, P and E functional sites of the 50S subunit. We observed that YphC and YsxC bind specifically to the two immature particles, suggesting that they represent either on-pathway intermediates or that their structure has not significantly diverged from that of the actual substrate. These results describe the nature of these immature particles, a widely used tool to study the assembly process of the ribosome. They also provide the first insights into the function of YphC and YsxC in 50S subunit assembly and are consistent with this process occurring through multiple parallel pathways, as it has been described for the 30S subunit.


Assuntos
Proteínas de Bactérias/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas Ribossômicas/metabolismo , Subunidades Ribossômicas Maiores de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Microscopia Crioeletrônica , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/ultraestrutura , Cinética , Espectrometria de Massas , Conformação Proteica , Estrutura Secundária de Proteína , Subunidades Proteicas/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/ultraestrutura , Subunidades Ribossômicas Maiores de Bactérias/ultraestrutura
19.
Int J Mol Sci ; 19(2)2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29438346

RESUMO

Commensal bacteria play an important role in the formation of the immune system but their role in the maintenance of immune homeostasis at the ocular surface and lacrimal gland remains poorly understood. This study investigated the eye and lacrimal gland phenotype in germ-free and conventional C57BL/6J mice. Our results showed that germ-free mice had significantly greater corneal barrier disruption, greater goblet cell loss, and greater total inflammatory cell and CD4⁺ T cell infiltration within the lacrimal gland compared to the conventionally housed group. A greater frequency of CD4⁺IFN-γ⁺ cells was observed in germ-free lacrimal glands. Females exhibited a more severe phenotype compared to males. Adoptive transfer of CD4⁺ T cells isolated from female germ-free mice into RAG1KO mice transferred Sjögren-like lacrimal keratoconjunctivitis. Fecal microbiota transplant from conventional mice reverted dry eye phenotype in germ-free mice and decreased CD4⁺IFN-γ⁺ cells to levels similar to conventional C57BL/6J mice. These findings indicate that germ-free mice have a spontaneous lacrimal keratoconjunctivitis similar to that observed in Sjögren syndrome patients and demonstrate that commensal bacteria function in maintaining immune homeostasis on the ocular surface. Thus, manipulation of intestinal commensal bacteria has the potential to become a novel therapeutic approach to treat Sjögren Syndrome.


Assuntos
Vida Livre de Germes/imunologia , Ceratoconjuntivite/microbiologia , Animais , Linfócitos T CD4-Positivos/imunologia , Transplante de Microbiota Fecal , Feminino , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Imunidade Inata , Interferon gama/metabolismo , Ceratoconjuntivite/imunologia , Ceratoconjuntivite/terapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota
20.
Infect Immun ; 85(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28760934

RESUMO

Integration of antibiotic and probiotic therapy has the potential to lessen the public health burden of antimicrobial-associated diseases. Clostridium difficile infection (CDI) represents an important example where the rational design of next-generation probiotics is being actively pursued to prevent disease recurrence. Because intrinsic resistance to clinically relevant antibiotics used to treat CDI (vancomycin, metronidazole, and fidaxomicin) is a desired trait in such probiotic species, we screened several bacteria and identified Lactobacillus reuteri to be a promising candidate for adjunct therapy. Human-derived L. reuteri bacteria convert glycerol to the broad-spectrum antimicrobial compound reuterin. When supplemented with glycerol, strains carrying the pocR gene locus were potent reuterin producers, with L. reuteri 17938 inhibiting C. difficile growth at a level on par with the level of growth inhibition by vancomycin. Targeted pocR mutations and complementation studies identified reuterin to be the precursor-induced antimicrobial agent. Pathophysiological relevance was demonstrated when the codelivery of L. reuteri with glycerol was effective against C. difficile colonization in complex human fecal microbial communities, whereas treatment with either glycerol or L. reuteri alone was ineffective. A global unbiased microbiome and metabolomics analysis independently confirmed that glycerol precursor delivery with L. reuteri elicited changes in the composition and function of the human microbial community that preferentially targets C. difficile outgrowth and toxicity, a finding consistent with glycerol fermentation and reuterin production. Antimicrobial resistance has thus been successfully exploited in the natural design of human microbiome evasion of C. difficile, and this method may provide a prototypic precursor-directed probiotic approach. Antibiotic resistance and substrate bioavailability may therefore represent critical new determinants of probiotic efficacy in clinical trials.


Assuntos
Antibacterianos/biossíntese , Clostridioides difficile/crescimento & desenvolvimento , Infecções por Clostridium/prevenção & controle , Gliceraldeído/análogos & derivados , Glicerol/administração & dosagem , Limosilactobacillus reuteri/metabolismo , Probióticos , Propano/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Clostridioides difficile/efeitos dos fármacos , Infecções por Clostridium/imunologia , Infecções por Clostridium/terapia , Descoberta de Drogas/métodos , Farmacorresistência Bacteriana , Fezes/microbiologia , Fermentação , Microbioma Gastrointestinal , Gliceraldeído/metabolismo , Gliceraldeído/farmacologia , Gliceraldeído/uso terapêutico , Glicerol/imunologia , Glicerol/metabolismo , Humanos , Metabolômica , Propano/farmacologia , Propano/uso terapêutico , Vancomicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA