Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37998212

RESUMO

In George Wald's Nobel Prize acceptance speech for "discoveries concerning the primary physiological and chemical visual processes in the eye", he noted that events after the activation of rhodopsin are too slow to explain visual reception. Photoreceptor membrane phosphoglycerides contain near-saturation amounts of the omega-3 fatty acid docosahexaenoic acid (DHA). The visual response to a photon is a retinal cis-trans isomerization. The trans-state is lower in energy; hence, a quantum of energy is released equivalent to the sum of the photon and cis-trans difference. We hypothesize that DHA traps this energy, and the resulting hyperpolarization extracts the energized electron, which depolarizes the membrane and carries a function of the photon's energy (wavelength) to the brain. There, it contributes to the creation of the vivid images of our world that we see in our consciousness. This proposed revision to the visual process provides an explanation for these previously unresolved issues around the speed of information transfer and the purity of conservation of a photon's wavelength and supports observations of the unique and indispensable role of DHA in the visual process.

2.
Sensors (Basel) ; 18(2)2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29389871

RESUMO

Therapeutic and subtherapeutic use of veterinary drugs has increased the risk of residue contamination in animal food products. Antibiotics such as tetracycline are used for mastitis treatment of lactating cows. Milk expressed from treated cows before the withdrawal period has elapsed may contain tetracycline residue. This study developed a simple surface-enhanced Raman spectroscopic (SERS) method for on-site screening of tetracycline residue in milk and water. Six batches of silver colloid nanoparticles were prepared for surface enhancement measurement. Milk-tetracycline and water-tetracycline solutions were prepared at seven concentration levels (1000, 500, 100, 10, 1, 0.1, and 0.01 ppm) and spiked with silver colloid nanoparticles. A 785 nm Raman spectroscopic system was used for spectral measurement. Tetracycline vibrational modes were observed at 1285, 1317 and 1632 cm-1 in water-tetracycline solutions and 1322 and 1621 cm-1 (shifted from 1317 and 1632 cm-1, respectively) in milk-tetracycline solutions. Tetracycline residue concentration as low as 0.01 ppm was detected in both the solutions. The peak intensities at 1285 and 1322 cm-1 were used to estimate the tetracycline concentrations in water and milk with correlation coefficients of 0.92 for water and 0.88 for milk. Results indicate that this SERS method is a potential tool that can be used on-site at field production for qualitative and quantitative detection of tetracycline residues.


Assuntos
Análise de Alimentos/instrumentação , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Leite/química , Análise Espectral Raman , Tetraciclinas/análise , Animais , Feminino , Nanopartículas Metálicas/química , Prata/química
3.
Molecules ; 23(12)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30545062

RESUMO

Background: Gradient temperature Raman spectroscopy (GTRS) applies the continuous temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a new means for rapid high throughput material identification and quality control. Methods: Using 20 Mb three-dimensional data arrays with 0.2 °C increments and first/second derivatives allows complete assignment of solid, liquid and transition state vibrational modes. The entire set or any subset of the any of the contour plots, first derivatives or second derivatives can be utilized to create a graphical standard to quickly authenticate a given source. In addition, a temperature range can be specified that maximizes information content. Results: We compared GTRS and DSC data for five commercial fish oils that are excellent sources of docosahexaenoic acid (DHA; 22:6n-3) and eicosapentaenoic acid (EPA; 20:5n-3). Each product has a unique, distinctive response to the thermal gradient, which graphically and spectroscopically differentiates them. We also present detailed Raman data and full vibrational mode assignments for EPA and DHA. Conclusion: Complex lipids with a variety of fatty acids and isomers have three dimensional structures based mainly on how structurally similar sites pack. Any localized non-uniformity in packing results in discrete "fingerprint" molecular sites due to increased elasticity and decreased torsion.


Assuntos
Óleos de Peixe , Animais , Varredura Diferencial de Calorimetria , Ácidos Docosa-Hexaenoicos/análise , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/análise , Ácidos Graxos Ômega-3/análise , Óleos de Peixe/análise , Óleos de Peixe/química , Ensaios de Triagem em Larga Escala , Análise Espectral Raman
4.
Nutr Health ; 21(1): 17-39, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22544773

RESUMO

Life originated on this planet about 3 billion years ago. For the first 2.5 billion years of life there was ample opportunity for DNA modification. Yet there is no evidence of significant change in life forms during that time. It was not until about 600 million years ago, when the oxygen tension rose to a point where air-breathing life forms became thermodynamically possible, that a major change can be abruptly seen in the fossil record. The sudden appearance of the 32 phyla in the Cambrian fossil record was also associated with the appearance of intracellular detail not seen in previous life forms. That detail was provided by cell membranes made with lipids (membrane fats) as structural essentials. Lipids thus played a major, as yet unrecognised, role as determinants in evolution. The compartmentalisation of intracellular, specialist functions as in the nucleus, mitochondria, reticulo-endothelial system and plasma membrane led to cellular specialisation and then speciation. Thus, not only oxygen but also the marine lipids were drivers in the Cambrian explosion. Docosahexaenoic acid (DHA) (all-cis-docosa-4,7,10,13,16,19-hexaenoic acid, C22:6ω3 or C22:6, n-3, DHA) is a major feature of marine lipids. It requires six oxygen atoms to insert its six double bonds, so it would not have been abundant before oxidative metabolism became plentiful. DHA provided the membrane backbone for the emergence of new photoreceptors that converted photons into electricity, laying the foundation for the evolution of other signalling systems, the nervous system and the brain. Hence, the ω3 DHA from the marine food web must have played a critical role in human evolution. There is also clear evidence from molecular biology that DHA is a determinant of neuronal migration, neurogenesis and the expression of several genes involved in brain growth and function. That same process was essential to the ultimate cerebral expansion in human evolution. There is now incontrovertible support of this hypothesis from fossil evidence of human evolution taking advantage of the marine food web. Lipids are still modifying the present evolutionary phase of our species; their signature is evident in the changing panorama of non-communicable diseases. The most worrying change in disease pattern is the sharp rise in brain disorders, which, in the European Union, has overtaken the cost of all other burdens of ill health at €386 billion for the 25 member states at 2004 prices. In 2007, the UK cost was estimated at £77 billion and confirmed in 2010 at £105 billion - greater than heart disease and cancer combined. The rise in mental ill health is now being globalised. The solution to the rising vascular disorders in the last century and now brain disorders in this century lies in a radical reappraisal of the food system, which last century was focussed on protein and calories, with little attention paid to the requirements of the brain - the very organ that was the determinant of human evolution. With the marine fish catch having plateaued 20 years ago and its sustainability now under threat, a critical aspect of this revision is the development of marine agriculture from estuarine, coastal and oceanic resources. Such action is likely to play a key role in future health and intelligence.


Assuntos
Evolução Biológica , Encéfalo/fisiologia , Ácidos Docosa-Hexaenoicos/fisiologia , Hominidae/fisiologia , Biologia Marinha , Fenômenos Fisiológicos da Nutrição , Animais , Aquicultura , Encéfalo/crescimento & desenvolvimento , Encefalopatias/fisiopatologia , Membrana Celular/química , Ácidos Docosa-Hexaenoicos/genética , Ácidos Docosa-Hexaenoicos/metabolismo , Humanos , Alimentos Marinhos
5.
Artigo em Inglês | MEDLINE | ID: mdl-33588307

RESUMO

One of the great unanswered biological questions is the absolute necessity of the polyunsaturated lipid docosahexaenoic acid (DHA; 22:6n-3) in retinal and neural tissues. Everything from the simple eye spot of dinoflagellates to cephalopods to every class of vertebrates uses DHA, yet it is abundant only in cold water marine food chains. Docosapentaenoic acids (DPAs; 22:5n-6 and especially 22:5n-3) are fairly plentiful in food chains yet cannot substitute for DHA. About 600 million years ago, multi-cellular, air breathing systems evolved rapidly and 32 phyla came into existence in a short geological time span; the "Cambrian Explosion". Eukaryotic intracellular detail requires cell membranes, which are constructed of complex lipids, and proteins. Proteins and nucleic acids would have been abundant during the first 2.5-5 billion years of anaerobic life but lipids, especially unsaturated fatty acids, would not. We hypothesize lipid biology was a key driver of the Cambrian Explosion, because it alone provides for compartmentalization and specialization within cells DHA has six methylene interrupted double bonds providing controlled electron flow at precise energy levels; this is essential for visual acuity and truthful execution of the neural pathways which make up our recollections, information processing and consciousness. The last double bond is critical for the evolution and function of the photoreceptor and neuronal and synaptic signaling systems. It completes a quantum mechanical device for the regulation of current flow with absolute signal precision based on electron tunneling (ET). DHA's methylene interruption distance is < 6 Å, making ET transfer between the π-orbitals feasible throughout the molecule. The possibility fails if one double bond is removed and replaced by a saturated bond as in the DPAs. The molecular biophysical foundation of neural signaling can also include the discrete pattern of paired spin states that arise in the DHA double bond and methylene regions. The complexity depends upon the number of C13 and H1 molecular sites in which spin states are coupled. Electron wave harmonics with entanglement and cohesion provide a mechanism for learning and memory, and power cognition and complex human brain functions.


Assuntos
Ácidos Docosa-Hexaenoicos/história , Ácidos Docosa-Hexaenoicos/metabolismo , Elétrons , Ácidos Graxos Insaturados/história , Ácidos Graxos Insaturados/metabolismo , Espaço Intracelular/metabolismo , Transdução de Sinais , Animais , Encéfalo/metabolismo , Carbono/metabolismo , Membrana Celular/metabolismo , Ácidos Docosa-Hexaenoicos/química , Ácidos Graxos Insaturados/química , História Antiga , Humanos , Hidrogênio/metabolismo , Neurônios/metabolismo , Retina/metabolismo
6.
Chem Phys Lipids ; 239: 105116, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34271000

RESUMO

Mixed chain phospholipids containing a saturated fatty acid at sn1 and a polyunsaturated fatty acid in sn2 are common in the specialized biological membranes prevalent in neural, retinal and organ tissues. Particularly important are mixed lipids containing palmitic or stearic acid and arachidonic or docosahexaenoic acid. Gradient temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements and phase transitions. Herein we utilize GTRS for 1-18:0, 2-20:4n-6 PC; 1-18:0 2-22:6n-3 PC; and 1-18:0, 2-18:0 PC from -80 to 50 °C temperatures. 20 Mb three-dimensional data arrays with 0.2 °C increments and first/second derivatives allowed detailed vibrational mode assignment and analysis. Samples were analyzed neat and with molecular hydration. Previously reported phase transitions for hydrated 18:0-20:4PC and 18:0-22:6PC and numerous spectral differences resulting from hydration and the double bond structure were clearly observed. Molecular models showed that the addition of minimal water molecules results in significant structural differences compared to the neat molecules; 18:0-22:6PC is strikingly compact with water when viewed from the hydrophilic end. This precise Raman data cannot be observed in typically utilized fully hydrated vesicle samples, however the improved GTRS will allow for more precise analysis in fully hydrated vesicles because the underlying modes in the unavoidably broadened spectra can be identified.


Assuntos
Fosfatidilcolinas/química , Análise Espectral Raman , Ácido Araquidônico/química , Ácidos Docosa-Hexaenoicos/química , Temperatura , Água/química
7.
J Environ Qual ; 36(5): 1429-43, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17766822

RESUMO

This paper reviews progress in phytoextraction of soil elements and illustrates the key role of hyperaccumulator plant species in useful phytoextraction technologies. Much research has focused on elements which are not practically phytoextracted (Pb); on addition of chelating agents which cause unacceptable contaminant leaching and are cost prohibitive; and on plant species which offer no useful phytoextraction capability (e.g., Brassica juncea Czern). Nickel phytoextraction by Alyssum hyperaccumulator species, which have been developed into a commercial phytomining technology, is discussed in more detail. Nickel is ultimately accumulated in vacuoles of leaf epidermal cells which prevents metal toxicity and provides defense against some insect predators and plant diseases. Constitutive up-regulation of trans-membrane element transporters appears to be the key process that allows these plants to achieve hyperaccumulation. Cadmium phytoextraction is needed for rice soils contaminated by mine wastes and smelter emissions with 100-fold more soil Zn than Cd. Although many plant species can accumulate high levels of Cd in the absence of Zn, when Cd/Zn>100, only Thlaspi caerulescens from southern France has demonstrated the ability to phytoextract useful amounts of Cd. Production of element-enriched biomass with value as ore or fertilizer or improved food (Se) or feed supplement may offset costs of phytoextraction crop production. Transgenic phytoextraction plants have been achieved for Hg, but not for other elements. Although several researchers have been attempting to clone all genes required for effective hyperaccumulation of several elements, success appears years away; such demonstrations will be needed to prove we have identified all necessary processes in hyperaccumulation.


Assuntos
Metais Pesados/isolamento & purificação , Plantas/metabolismo , Poluentes do Solo/isolamento & purificação , Arabidopsis/classificação , Arabidopsis/genética , Arabidopsis/fisiologia , Biodegradação Ambiental , Transporte Biológico Ativo , Quelantes/química , Quelantes/metabolismo , Poluição Ambiental/prevenção & controle , Chumbo/isolamento & purificação , Chumbo/metabolismo , Metais Pesados/metabolismo , Níquel/isolamento & purificação , Níquel/metabolismo , Poluentes do Solo/metabolismo , Especificidade da Espécie , Fatores de Tempo
8.
Artigo em Inglês | MEDLINE | ID: mdl-29156157

RESUMO

Despite its biochemical importance, a complete Raman analysis of arachidonic acid (AA, 20:4n-6) has never been reported. Gradient temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we utilize the GTRS technique for AA and 1-18:0, 2-20:4n-6 phosphatidyl choline (AAPC) from cryogenic to mammalian body temperatures. 20Mb three-dimensional data arrays with 0.2°C increments and first/second derivatives allowed complete assignment of solid, liquid and transition state vibrational modes. The AA DSC shows a large exothermic peak at -60°C indicating crystallization or a similar major structural change. No exothermic peak of this magnitude was observed in six other unsaturated lipids (DHA, n-3DPA, n-6DPA, LA, ALA, OA). Melting in AA occurs over a large range: (-60 to -35°C): very large frequency offsets and intensity changes correlate with premelting initiating circa -60°C, followed by melting (-37°C). Novel, unique 3D structures for both molecules reveal that AA is not symmetric as a free fatty acid, and it changes significantly when in the sn-2 phospholipid position. Further, different CH and CH2 sites are unequally elastic and nonequivalent.


Assuntos
Ácido Araquidônico/química , Lisofosfatidilcolinas/química , Modelos Moleculares , Varredura Diferencial de Calorimetria , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Fosforilcolina/química , Análise Espectral Raman , Temperatura
9.
Chem Phys Lipids ; 204: 94-104, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28342541

RESUMO

Docosahexaenoic acid (DHA, 22:6n-3) is exclusively utilized in fast signal processing tissues such as retinal, neural and cardiac. N-3 docosapentaenoic acid (n-3DPA, 22:5n-3), with just one less double bond, is also found in the marine food chain yet cannot substitute for DHA. Gradient temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS and both conventional and modulated DSC to n-3DPA and DHA from -100 to 20°C. Three-dimensional data arrays with 0.2°C increments and first derivatives allowed complete assignment of solid, liquid and transition state vibrational modes. Melting temperatures n-3DPA (-45°C) and DHA (-46°C) are similar and show evidence for solid-state phase transitions not seen in n-6DPA (-27°C melt). The C6H2 site is an elastic marker for temperature perturbation of all three lipids, each of which has a distinct three dimensional structure. N-3 DPA shows the spectroscopic signature of saturated fatty acids from C1 to C6. DHA does not have three aliphatic carbons in sequence; n-6DPA does but they occur at the methyl end, and do not yield the characteristic signal. DHA appears to have uniform twisting from C6H2 to C12H2 to C18H2 whereas n-6DPA bends from C12 to C18, centered at C15H2. For n-3DPA, twisting is centered at C6H2 adjacent to the C2-C3-C4-C5 aliphatic moiety. These molecular sites are the most elastic in the solid phase and during premelting.


Assuntos
Calorimetria , Ácidos Docosa-Hexaenoicos/química , Ácidos Graxos Insaturados/química , Temperatura , Análise Espectral Raman
10.
Diabetes Technol Ther ; 8(6): 677-87, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17109600

RESUMO

Chromium (Cr) picolinate (CrPic) is a widely used nutritional supplement for optimal insulin function. A relationship among Cr status, diabetes, and associated pathologies has been established. Virtually all trials using CrPic supplementation for subjects with diabetes have demonstrated beneficial effects. Thirteen of 15 clinical studies (including 11 randomized, controlled studies) involving a total of 1,690 subjects (1,505 in CrPic group) reported significant improvement in at least one outcome of glycemic control. All 15 studies showed salutary effects in at least one parameter of diabetes management, including dyslipidemia. Positive outcomes from CrPic supplementation included reduced blood glucose, insulin, cholesterol, and triglyceride levels and reduced requirements for hypoglycemic medication. The greater bioavailability of CrPic compared with other forms of Cr (e.g., niacin-bound Cr or CrCl(3)) may explain its comparatively superior efficacy in glycemic and lipidemic control. The pooled data from studies using CrPic supplementation for type 2 diabetes mellitus subjects show substantial reductions in hyperglycemia and hyperinsulinemia, which equate to a reduced risk for disease complications. Collectively, the data support the safety and therapeutic value of CrPic for the management of cholesterolemia and hyperglycemia in subjects with diabetes.


Assuntos
Glicemia/efeitos dos fármacos , Diabetes Mellitus/tratamento farmacológico , Quelantes de Ferro/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Ácidos Picolínicos/uso terapêutico , Composição Corporal , Cromo/deficiência , Ensaios Clínicos como Assunto , Diabetes Mellitus/metabolismo , Hemoglobinas Glicadas/efeitos dos fármacos , Humanos , Hiperlipidemias/tratamento farmacológico , Insulina/sangue , Quelantes de Ferro/farmacologia , Ácidos Picolínicos/farmacologia
11.
Lipids ; 51(11): 1289-1302, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27663253

RESUMO

We analyzed the unsaturated fatty acids oleic (OA, 18:1n-9) and linoleic (LA, 18:2n-3), and a 3:1 LA:OA mixture from -100 to 50 °C with continuous gradient temperature Raman spectroscopy (GTRS). The 20 Mb three-dimensional data arrays with 0.2 °C increments and first/second derivatives allowed rapid, complete assignment of solid, liquid, and transition state vibrational modes. For OA, large spectral and line width changes occurred in the solid state γ to α transition near -4 °C, and the melt (13 °C) over a range of only 1 °C. For LA, major intensity reductions from 200 to 1750 cm-1 and some peak shifts marked one solid state phase transition at -50 °C. A second solid state transition (-33 °C) had minor spectral changes. Large spectral and line width changes occurred at the melt transition (-7 °C) over a narrow temperature range. For both molecules, melting initiates at the diene structure, then progresses towards the ends. In the 3:1 LA:OA mixture, some less intense and lower frequencies present in the individual lipids are weaker or absent. For example, modes assignable to C8 rocking, C9H-C10H wagging, C10H-C11H wagging, and CH3 rocking are present in OA but absent in LA:OA. Our data quantify the concept of lipid premelting and identify the flexible structures within OA and LA, which have characteristic vibrational modes beginning at cryogenic temperatures.


Assuntos
Ácidos Linoleicos/química , Ácido Oleico/química , Análise Espectral Raman/métodos , Transição de Fase , Temperatura
12.
Chem Phys Lipids ; 200: 1-10, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27326703

RESUMO

One of the great unanswered questions with respect to biological science in general is the absolute necessity of docosahexaenoic acid (DHA, 22:6n-3) in fast signal processing tissues. N-6 docosapentaenoic acid (n-6DPA, 22:5n-6), with just one less double bond, group, is fairly abundant in terrestrial food chains yet cannot substitute for DHA. Gradient temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry (DSC) to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS and DSC to n-6DPA and DHA from -100 to 20°C. 20Mb three-dimensional data arrays with 0.2°C increments and first/second derivatives allowed complete assignment of solid, liquid and transition state vibrational modes, including low intensity/frequency vibrations that cannot be readily analyzed with conventional Raman. N-6DPA and DHA show significant spectral changes with premelting (-33 and -60°C, respectively) and melting (-27 and -44°C, respectively). The CH2(HCCH)CH2 moieties are not identical in the second half of the DHA and DPA structures. DPA has bending (1450cm-1) over almost the entire temperature range. In contrast, DHA contains major CH2 twisting (1265cm-1) with no noticeable CH2 bending, consistent with a flat helical structure with a small pitch. Further modeling of neuronal membrane phospholipids must take into account torsion present in the DHA structure, which essential in determining whether the lipid chain is configured more parallel or perpendicular to the hydrophilic head group.


Assuntos
Ácidos Docosa-Hexaenoicos/química , Ácidos Eicosanoicos/química , Temperatura , Estrutura Molecular , Análise Espectral Raman
13.
Z Naturforsch C J Biosci ; 60(3-4): 190-8, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15948583

RESUMO

Two strategies of phytoextraction have been shown to have promise for practical soil remediation: domestication of natural hyperaccumulators and bioengineering plants with the genes that allow natural hyperaccumulators to achieve useful phytoextraction. Because different elements have different value, some can be phytomined for profit and others can be phytoremediated at lower cost than soil removal and replacement. Ni phytoextraction from contaminated or mineralized soils offers economic return greater than producing most crops, especially when considering the low fertility or phytotoxicity of Ni rich soils. Only soils that require remediation based on risk assessment will comprise the market for phytoremediation. Improved risk assessment has indicated that most Zn + Cd contaminated soils will not require Cd phytoextraction because the Zn limits practical risk from soil Cd. But rice and tobacco, and foods grown on soils with Cd contamination without corresponding 100-fold greater Zn contamination, allow Cd to readily enter food plants and diets. Clear evidence of human renal tubular dysfunction from soil Cd has only been obtained for subsistence rice farm families in Asia. Because of historic metal mining and smelting, Zn + Cd contaminated rice soils have been found in Japan, China, Korea, Vietnam and Thailand. Phytoextraction using southern France populations of Thlaspi caerulescens appears to be the only practical method to alleviate Cd risk without soil removal and replacement. The southern France plants accumulate 10-20-fold higher Cd in shoots than most T. caerulescens populations such as those from Belgium and the UK. Addition of fertilizers to maximize yield does not reduce Cd concentration in shoots; and soil management promotes annual Cd removal. The value of Cd in the plants is low, so the remediation service must pay the costs of Cd phytoextraction plus profits to the parties who conduct phytoextraction. Some other plants have been studied for Cd phytoextraction, but annual removals are much lower than the best T. caerulescens. Improved cultivars with higher yields and retaining this remarkable Cd phytoextraction potential are being bred using normal plant breeding techniques.


Assuntos
Biodegradação Ambiental , Cádmio/metabolismo , Níquel/metabolismo , Plantas/metabolismo , Biomassa , Intoxicação por Cádmio/prevenção & controle , Humanos , Oryza , Brotos de Planta/metabolismo , Poluentes do Solo , Zinco/análise
14.
Appl Spectrosc ; 69(3): 398-406, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25664966

RESUMO

Hyperspectral Raman imaging has the potential for rapid screening of solid-phase samples for potential adulterants. We can improve mixture analysis algorithms by defining a temperature range in which the contaminant spectrum changes dramatically and uniquely compared with unadulterated material. Raman spectra were acquired for urea, biuret, cyanuric acid, and melamine (pure and at 1% in dried milk powder) from 50 to 310 °C with a gradient of 1 °C min(-1). Adulterants were clearly indentified in the milk powder. Specific frequencies that were mainly associated with ring breathing, stretching, and in-plane deformation shifted with respect to temperature up to 12 cm(-1) in all four molecules. Specific frequencies significantly increased/decreased in intensity within narrow temperature ranges independent of whether the amine was mixed in milk. Correlation of Raman and differential scanning calorimetry data identified structural components and vibrational modes, which concur with or trigger phase transitions.


Assuntos
Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Leite/química , Análise Espectral Raman/métodos , Triazinas/análise , Triazinas/química , Animais , Contaminação de Alimentos/prevenção & controle , Pós , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Temperatura
15.
Int J Phytoremediation ; 17(1-6): 25-39, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25174422

RESUMO

Past applications of biosolids to soils at some locations added higher Cd levels than presently permitted. Cadmium phytoextraction would alleviate current land use constraints. Unamended farm soil, and biosolids amended farm and mine soils were obtained from a Fulton Co., IL biosolids management facility. Soils contained 0.16, 22.8, 45.3 mg Cd kg(-1) and 43.1, 482, 812 mg Zn kg(-1) respectively with initial pH 6.0, 6.1, 6.4. In greenhouse studies, Swiss chard (Beta vulgaris var. cicla), a Cd-accumulator maize (inbred B37 Zea mays) and a southern France Cd-hyperaccumulator genotype of Noccaea caerulescens were tested for Cd accumulation and phytoextraction. Soil pH was adjusted from ∼5.5-7.0. Additionally 100 rice (Oryza sativa) genotypes and the Ni-hyperaccumulator Alyssum murale were screened for potential phytoextraction use. Chard suffered phytotoxicity at low pH and accumulated up to 90 mg Cd kg(-1) on the biosolids amended mine soil. The maize inbred accumulated up to 45 mg Cd kg(-1) with only mild phytotoxicity symptoms during early growth at pH>6.0. N. caerulescens did not exhibit phytotoxicity symptoms at any pH, and accumulated up to 235 mg Cd kg(-1) in 3 months. Reharvested N. caerulescens accumulated up to 900 mg Cd kg(-1) after 10 months. Neither Alyssum nor 90% of rice genotypes survived acceptably. Both N. caerulescens and B37 maize show promise for Cd phytoextraction in IL and require field evaluation; both plants could be utilized for nearly continuous Cd removal. Other maize inbreds may offer higher Cd phytoextraction at lower pH, and mono-cross hybrids higher shoot biomass yields. Further, maize grown only for biomass Cd maximum removal could be double-cropped.


Assuntos
Beta vulgaris/metabolismo , Brassicaceae/metabolismo , Cádmio/metabolismo , Recuperação e Remediação Ambiental/métodos , Oryza/metabolismo , Poluentes do Solo/metabolismo , Zea mays/metabolismo , Beta vulgaris/química , Beta vulgaris/crescimento & desenvolvimento , Biodegradação Ambiental , Brassicaceae/química , Brassicaceae/crescimento & desenvolvimento , Cádmio/análise , Concentração de Íons de Hidrogênio , Oryza/química , Oryza/crescimento & desenvolvimento , Solo/química , Poluentes do Solo/análise , Zea mays/química , Zea mays/crescimento & desenvolvimento
16.
J Agric Food Chem ; 52(13): 4250-5, 2004 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-15212476

RESUMO

In the (13)C NMR spectra of natural, unenriched docosahexaenoic acid-rich sardine oil and cod muscle glycerophosphocholine significant signal intensity differences across the 1D spectrum between undiluted and diluted samples were observed. In undiluted samples (13)C-(13)C 2D nuclear Overhauser enhancement spectroscopy (NOESY) interchain cross-peaks for CH, CH(2), CH(3), and C=C structures were observed. Results indicate that in undiluted natural lipids, NMR signal intensity is influenced by polarization transfer from the extended lipid structure. The NOE enhancement of specific molecular sites especially in unsaturated lipids is evidence that some natural lipids remain oriented relative to each other and in an orderly arrangement at the molecular level long enough for the effect to be detected by the NMR experiment. The presence of polyunsaturated fatty acids in mixtures of natural lipids could stabilize specific local molecular conformations within the remaining less saturated lipids.


Assuntos
Ácidos Docosa-Hexaenoicos/análise , Peixes , Espectroscopia de Ressonância Magnética , Fosfolipídeos/análise , Triglicerídeos/análise , Animais , Óleos de Peixe/análise , Músculos/química
17.
J Agric Food Chem ; 52(1): 65-70, 2004 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-14709014

RESUMO

The causes and control of type 2 diabetes mellitus are not clear, but there is strong evidence that dietary factors are involved in its regulation and prevention. We have shown that extracts from cinnamon enhance the activity of insulin. The objective of this study was to isolate and characterize insulin-enhancing complexes from cinnamon that may be involved in the alleviation or possible prevention and control of glucose intolerance and diabetes. Water-soluble polyphenol polymers from cinnamon that increase insulin-dependent in vitro glucose metabolism roughly 20-fold and display antioxidant activity were isolated and characterized by nuclear magnetic resonance and mass spectroscopy. The polymers were composed of monomeric units with a molecular mass of 288. Two trimers with a molecular mass of 864 and a tetramer with a mass of 1152 were isolated. Their protonated molecular masses indicated that they are A type doubly linked procyanidin oligomers of the catechins and/or epicatechins. These polyphenolic polymers found in cinnamon may function as antioxidants, potentiate insulin action, and may be beneficial in the control of glucose intolerance and diabetes.


Assuntos
Cinnamomum zeylanicum/química , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Insulina/farmacologia , Fenóis/isolamento & purificação , Fenóis/farmacologia , Antioxidantes , Diabetes Mellitus/prevenção & controle , Flavonoides/química , Intolerância à Glucose/prevenção & controle , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Fenóis/química , Polifenóis
18.
Comp Biochem Physiol B Biochem Mol Biol ; 131(4): 653-73, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11923081

RESUMO

The polyunsaturated fatty acid (PUFA) composition of the mammalian central nervous system is almost wholly composed of two long-chain polyunsaturated fatty acids (LC-PUFA), docosahexaenoic acid (DHA) and arachidonic acid (AA). PUFA are dietarily essential, thus normal infant/neonatal brain, intellectual growth and development cannot be accomplished if they are deficient during pregnancy and lactation. Uniquely in the human species, the fetal brain consumes 70% of the energy delivered to it by mother. DHA and AA are needed to construct placental and fetal tissues for cell membrane growth, structure and function. Contemporary evidence shows that the maternal circulation is depleted of AA and DHA during fetal growth. Sustaining normal adult human brain function also requires LC-PUFA.Homo sapiens is unlikely to have evolved a large, complex, metabolically expensive brain in an environment which did not provide abundant dietary LC-PUFA. Conversion of 18-carbon PUFA from vegetation to AA and DHA is considered quantitatively insufficient due to a combination of high rates of PUFA oxidation for energy, inefficient and rate limited enzymatic conversion and substrate recycling. The littoral marine and lacustrine food chains provide consistently greater amounts of pre-formed LC-PUFA than the terrestrial food chain. Dietary levels of DHA are 2.5-100 fold higher for equivalent weights of marine fish or shellfish vs. lean or fat terrestrial meats. Mammalian brain tissue and bird egg yolks, especially from marine birds, are the richest terrestrial sources of LC-PUFA. However, land animal adipose fats have been linked to vascular disease and mental ill-health, whereas marine lipids have been demonstrated to be protective. At South African Capesites, large shell middens and fish remains are associated with evidence for some of the earliest modern humans. Cape sites dating from 100 to 18 kya cluster within 200 km of the present coast. Evidence of early H. sapiens is also found around the Rift Valley lakes and up the Nile Corridor into the Middle East; in some cases there is an association with the use of littoral resources. Exploitation of river, estuarine, stranded and spawning fish, shellfish and sea bird nestlings and eggs by Homo could have provided essential dietary LC-PUFA for men, women, and children without requiring organized hunting/fishing, or sophisticated social behavior. It is however, predictable from the present evidence that exploitation of this food resource would have provided the advantage in multi-generational brain development which would have made possible the advent of H. sapiens. Restriction to land based foods as postulated by the savannah and other hypotheses would have led to degeneration of the brain and vascular system as happened without exception in all other land based apes and mammals as they evolved larger bodies.


Assuntos
Encéfalo/metabolismo , Lipídeos/química , Animais , Antioxidantes/farmacologia , Evolução Biológica , Ácidos Graxos Insaturados/metabolismo , Peixes , Hominidae , Humanos , Iodo/metabolismo , Ácidos Linolênicos/farmacologia , Carne , Oriente Médio , Modelos Químicos , Fenômenos Fisiológicos da Nutrição , Frutos do Mar , Especificidade da Espécie , Vitamina A/metabolismo
19.
Mil Med ; 179(11 Suppl): 61-75, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25373088

RESUMO

The aim of this article is to draw attention to the special significance of docosahexaenoic acid (DHA) in the brain, the potential relevance of its abundance to the evolution of the brain in past history, and now the relevance of paucity in the food supply to the rise in mental ill-health. Membrane lipids of photoreceptors, synapses, and neurons over the last 600 million years contained consistent and similarly high levels of DHA despite wide genomic change. The consistency is despite the DHA precursor differing only by 2 protons. This striking conservation is an example of Darwin's "Conditions of Existence," which he described as the higher force in evolution. A purpose of this article is to suggest that the present paradigm of food production currently based on protein requirements, should change to serve the specific lipid needs of the brain to address the rise in mental ill-health.(1.)


Assuntos
Evolução Biológica , Encéfalo/crescimento & desenvolvimento , Ácidos Docosa-Hexaenoicos/fisiologia , Sistema Nervoso/crescimento & desenvolvimento , Animais , Encefalopatias/prevenção & controle , Sequência Conservada , Dieta , Ácidos Docosa-Hexaenoicos/genética , Abastecimento de Alimentos , Humanos , Lipídeos de Membrana/genética , Lipídeos de Membrana/fisiologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-23206328

RESUMO

Six hundred million years ago, the fossil record displays the sudden appearance of intracellular detail and the 32 phyla. The "Cambrian Explosion" marks the onset of dominant aerobic life. Fossil intracellular structures are so similar to extant organisms that they were likely made with similar membrane lipids and proteins, which together provided for organisation and specialisation. While amino acids could be synthesised over 4 billion years ago, only oxidative metabolism allows for the synthesis of highly unsaturated fatty acids, thus producing novel lipid molecular species for specialised cell membranes. Docosahexaenoic acid (DHA) provided the core for the development of the photoreceptor, and conversion of photons into electricity stimulated the evolution of the nervous system and brain. Since then, DHA has been conserved as the principle acyl component of photoreceptor synaptic and neuronal signalling membranes in the cephalopods, fish, amphibian, reptiles, birds, mammals and humans. This extreme conservation in electrical signalling membranes despite great genomic change suggests it was DHA dictating to DNA rather than the generally accepted other way around. We offer a theoretical explanation based on the quantum mechanical properties of DHA for such extreme conservation. The unique molecular structure of DHA allows for quantum transfer and communication of π-electrons, which explains the precise depolarisation of retinal membranes and the cohesive, organised neural signalling which characterises higher intelligence.


Assuntos
Evolução Biológica , Encéfalo/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Neurônios/metabolismo , Teoria Quântica , Transdução de Sinais , Transmissão Sináptica , Animais , Ácidos Docosa-Hexaenoicos/química , Partículas Elementares , Humanos , Estrutura Molecular , Células Fotorreceptoras/metabolismo , Retina/metabolismo , Visão Ocular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA