RESUMO
Phenotypic and transcriptional profiling of regulatory T (Treg) cells at homeostasis reveals that T cell receptor activation promotes Treg cells with an effector phenotype (eTreg) characterized by the production of interleukin-10 and expression of the inhibitory receptor PD-1. At homeostasis, blockade of the PD-1 pathway results in enhanced eTreg cell activity, whereas during infection with Toxoplasma gondii, early interferon-γ upregulates myeloid cell expression of PD-L1 associated with reduced Treg cell populations. In infected mice, blockade of PD-L1, complete deletion of PD-1 or lineage-specific deletion of PD-1 in Treg cells prevents loss of eTreg cells. These interventions resulted in a reduced ratio of pathogen-specific effector T cells: eTreg cells and increased levels of interleukin-10 that mitigated the development of immunopathology, but which could compromise parasite control. Thus, eTreg cell expression of PD-1 acts as a sensor to rapidly tune the pool of eTreg cells at homeostasis and during inflammatory processes.
Assuntos
Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Linfócitos T Reguladores , Toxoplasmose Animal , Animais , Antígeno B7-H1/imunologia , Homeostase , Interleucina-10/imunologia , Camundongos , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T Reguladores/imunologia , Toxoplasma/imunologia , Toxoplasmose Animal/imunologiaRESUMO
Interferon-gamma (IFN-γ) has pleiotropic effects on cancer immune checkpoint blockade (ICB), including roles in ICB resistance. We analyzed gene expression in ICB-sensitive versus ICB-resistant tumor cells and identified a strong association between interferon-mediated resistance and expression of Ripk1, a regulator of tumor necrosis factor (TNF) superfamily receptors. Genetic interaction screening revealed that in cancer cells, RIPK1 diverted TNF signaling through NF-κB and away from its role in cell death. This promoted an immunosuppressive chemokine program by cancer cells, enhanced cancer cell survival, and decreased infiltration of T and NK cells expressing TNF superfamily ligands. Deletion of RIPK1 in cancer cells compromised chemokine secretion, decreased ARG1+ suppressive myeloid cells linked to ICB failure in mice and humans, and improved ICB response driven by CASP8-killing and dependent on T and NK cells. RIPK1-mediated resistance required its ubiquitin scaffolding but not kinase function. Thus, cancer cells co-opt RIPK1 to promote cell-intrinsic and cell-extrinsic resistance to immunotherapy.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico , Interferons , Neoplasias , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Imunoterapia , Interferon gama/metabolismo , Interferons/metabolismo , Camundongos , NF-kappa B/metabolismo , Neoplasias/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismoRESUMO
Infections have been proposed as initiating factors for inflammatory disorders; however, identifying associations between defined infectious agents and the initiation of chronic disease has remained elusive. Here, we report that a single acute infection can have dramatic and long-term consequences for tissue-specific immunity. Following clearance of Yersinia pseudotuberculosis, sustained inflammation and associated lymphatic leakage in the mesenteric adipose tissue deviates migratory dendritic cells to the adipose compartment, thereby preventing their accumulation in the mesenteric lymph node. As a consequence, canonical mucosal immune functions, including tolerance and protective immunity, are persistently compromised. Post-resolution of infection, signals derived from the microbiota maintain inflammatory mesentery remodeling and consequently, transient ablation of the microbiota restores mucosal immunity. Our results indicate that persistent disruption of communication between tissues and the immune system following clearance of an acute infection represents an inflection point beyond which tissue homeostasis and immunity is compromised for the long-term. VIDEO ABSTRACT.
Assuntos
Microbioma Gastrointestinal , Doenças do Sistema Imunitário/microbiologia , Doenças do Sistema Imunitário/patologia , Doenças Linfáticas/patologia , Infecções por Yersinia pseudotuberculosis/imunologia , Yersinia pseudotuberculosis/fisiologia , Movimento Celular , Doença Crônica , Células Dendríticas/patologia , Feminino , Humanos , Doenças Linfáticas/microbiologia , Tecido Linfoide/imunologia , Tecido Linfoide/patologia , Masculino , Mesentério/imunologia , Mesentério/patologia , Organismos Livres de Patógenos Específicos , Infecções por Yersinia pseudotuberculosis/patologiaRESUMO
The immune system of multicellular organisms protects them from harmful microbes. To establish an infection in the face of host immune responses, pathogens must evolve specific strategies to target immune defense mechanisms. One such defense is the formation of intracellular protein complexes, termed inflammasomes, that are triggered by the detection of microbial components and the disruption of homeostatic processes that occur during bacterial infection. Formation of active inflammasomes initiates programmed cell death pathways via activation of inflammatory caspases and cleavage of target proteins. Inflammasome-activated cell death pathways such as pyroptosis lead to proinflammatory responses that protect the host. Bacterial infection has the capacity to influence inflammasomes in two distinct ways: activation and perturbation. In this review, we discuss how bacterial activities influence inflammasomes, and we discuss the consequences of inflammasome activation or evasion for both the host and pathogen.
Assuntos
Apoptose , Inflamassomos , Homeostase , Piroptose , Transdução de SinaisRESUMO
The execution of shock following high dose E. coli lipopolysaccharide (LPS) or bacterial sepsis in mice required pro-apoptotic caspase-8 in addition to pro-pyroptotic caspase-11 and gasdermin D. Hematopoietic cells produced MyD88- and TRIF-dependent inflammatory cytokines sufficient to initiate shock without any contribution from caspase-8 or caspase-11. Both proteases had to be present to support tumor necrosis factor- and interferon-ß-dependent tissue injury first observed in the small intestine and later in spleen and thymus. Caspase-11 enhanced the activation of caspase-8 and extrinsic cell death machinery within the lower small intestine. Neither caspase-8 nor caspase-11 was individually sufficient for shock. Both caspases collaborated to amplify inflammatory signals associated with tissue damage. Therefore, combined pyroptotic and apoptotic signaling mediated endotoxemia independently of RIPK1 kinase activity and RIPK3 function. These observations bring to light the relevance of tissue compartmentalization to disease processes in vivo where cytokines act in parallel to execute diverse cell death pathways.
Assuntos
Caspase 8/metabolismo , Caspases/metabolismo , Infecções por Escherichia coli/enzimologia , Infecções por Escherichia coli/fisiopatologia , Choque Séptico/enzimologia , Choque Séptico/fisiopatologia , Animais , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Caspase 8/genética , Caspases/genética , Caspases Iniciadoras , Células Cultivadas , Feminino , Inflamação/metabolismo , Inflamação/patologia , Fator Regulador 3 de Interferon/genética , Interferon beta/sangue , Interferon beta/metabolismo , Intestino Delgado/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Lipopolissacarídeos/toxicidade , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a Fosfato , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Baço/patologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Regulated cell death in response to microbial infection plays an important role in immune defense and is triggered by pathogen disruption of essential cellular pathways. Gram-negative bacterial pathogens in the Yersinia genus disrupt NF-κB signaling via translocated effectors injected by a type III secretion system, thereby preventing induction of cytokine production and antimicrobial defense. In murine models of infection, Yersinia blockade of NF-κB signaling triggers cell-extrinsic apoptosis through Receptor Interacting Serine-Threonine Protein Kinase 1 (RIPK1) and caspase-8, which is required for bacterial clearance and host survival. Unexpectedly, we find that human macrophages undergo apoptosis independently of RIPK1 in response to Yersinia or chemical blockade of IKKß. Instead, IKK blockade led to decreased cFLIP expression, and overexpression of cFLIP contributed to protection from IKK blockade-induced apoptosis in human macrophages. We found that IKK blockade also induces RIPK1 kinase activity-independent apoptosis in human T cells and human pancreatic cells. Altogether, our data indicate that, in contrast to murine cells, blockade of IKK activity in human cells triggers a distinct apoptosis pathway that is independent of RIPK1 kinase activity. These findings have implications for the contribution of RIPK1 to cell death in human cells and the efficacy of RIPK1 inhibition in human diseases.
Assuntos
Apoptose , Quinase I-kappa B , Macrófagos , Proteína Serina-Treonina Quinases de Interação com Receptores , Transdução de Sinais , Humanos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Apoptose/fisiologia , Macrófagos/metabolismo , Quinase I-kappa B/metabolismo , NF-kappa B/metabolismo , Animais , Camundongos , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , YersiniaRESUMO
Diverse cellular responses to external cues are controlled by a small number of signal-transduction pathways, but how the specificity of functional outcomes is achieved remains unclear. Here we describe a mechanism for signal integration based on the functional coupling of two distinct signaling pathways widely used in leukocytes: the ITAM pathway and the Jak-STAT pathway. Through the use of the receptor for interferon-γ (IFN-γR) and the ITAM adaptor Fcγ as an example, we found that IFN-γ modified responses of the phagocytic antibody receptor FcγRI (CD64) to specify cell-autonomous antimicrobial functions. Unexpectedly, we also found that in peritoneal macrophages, IFN-γR itself required tonic signaling from Fcγ through the kinase PI(3)K for the induction of a subset of IFN-γ-specific antimicrobial functions. Our findings may be generalizable to other ITAM and Jak-STAT signaling pathways and may help explain signal integration by those pathways.
Assuntos
Motivo de Ativação do Imunorreceptor Baseado em Tirosina/imunologia , Janus Quinase 2/metabolismo , Listeriose/imunologia , Macrófagos/imunologia , Receptor Cross-Talk/imunologia , Fator de Transcrição STAT1/metabolismo , Animais , Carga Bacteriana , Células Cultivadas , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/metabolismo , Motivo de Ativação do Imunorreceptor Baseado em Tirosina/genética , Interferon gama/imunologia , Interferon gama/metabolismo , Janus Quinase 2/genética , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fagocitose/genética , Inibidores de Fosfoinositídeo-3 Quinase , Engenharia de Proteínas , Receptores de IgG/genética , Receptores de IgG/metabolismo , Receptores de Interferon/metabolismo , Fator de Transcrição STAT1/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Ativação Transcricional/efeitos dos fármacos , Receptor de Interferon gamaRESUMO
Intestinal epithelial cells (IECs) form a critical barrier against pathogen invasion. By generation of mice in which inflammasome expression is restricted to IECs, we describe a coordinated epithelium-intrinsic inflammasome response in vivo. This response was sufficient to protect against Salmonella tissue invasion and involved a previously reported IEC expulsion that was coordinated with lipid mediator and cytokine production and lytic IEC death. Excessive inflammasome activation in IECs was sufficient to result in diarrhea and pathology. Experiments with IEC organoids demonstrated that IEC expulsion did not require other cell types. IEC expulsion was accompanied by a major actin rearrangement in neighboring cells that maintained epithelium integrity but did not absolutely require Caspase-1 or Gasdermin D. Analysis of Casp1-/-Casp8-/- mice revealed a functional Caspase-8 inflammasome in vivo. Thus, a coordinated IEC-intrinsic, Caspase-1 and -8 inflammasome response plays a key role in intestinal immune defense and pathology.
Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Caspase 1/metabolismo , Caspase 8/metabolismo , Eicosanoides/metabolismo , Células Epiteliais/metabolismo , Interleucina-18/metabolismo , Proteína Inibidora de Apoptose Neuronal/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas de Ligação ao Cálcio/genética , Caspase 1/genética , Caspase 8/genética , Ativação Enzimática , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/microbiologia , Inflamassomos/genética , Inflamassomos/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Proteínas de Ligação a Fosfato , Infecções por Salmonella/metabolismo , Infecções por Salmonella/microbiologia , Salmonella typhimurium/fisiologiaRESUMO
White adipose tissue bridges body organs and plays a fundamental role in host metabolism. To what extent adipose tissue also contributes to immune surveillance and long-term protective defense remains largely unknown. Here, we have shown that at steady state, white adipose tissue contained abundant memory lymphocyte populations. After infection, white adipose tissue accumulated large numbers of pathogen-specific memory T cells, including tissue-resident cells. Memory T cells in white adipose tissue expressed a distinct metabolic profile, and white adipose tissue from previously infected mice was sufficient to protect uninfected mice from lethal pathogen challenge. Induction of recall responses within white adipose tissue was associated with the collapse of lipid metabolism in favor of antimicrobial responses. Our results suggest that white adipose tissue represents a memory T cell reservoir that provides potent and rapid effector memory responses, positioning this compartment as a potential major contributor to immunological memory.
Assuntos
Tecido Adiposo Branco/transplante , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Toxoplasmose/imunologia , Infecções por Yersinia pseudotuberculosis/imunologia , Tecido Adiposo Branco/imunologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linfócitos T CD4-Positivos/microbiologia , Linfócitos T CD4-Positivos/parasitologia , Linfócitos T CD8-Positivos/microbiologia , Linfócitos T CD8-Positivos/parasitologia , Expressão Gênica , Genes Reporter , Interferon gama/genética , Interferon gama/imunologia , Interleucina-17/genética , Interleucina-17/imunologia , Interleucina-5/genética , Interleucina-5/imunologia , Metabolismo dos Lipídeos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Sobrevida , Transplante de Tecidos , Toxoplasma/imunologia , Toxoplasmose/genética , Toxoplasmose/mortalidade , Toxoplasmose/parasitologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Yersinia pseudotuberculosis/imunologia , Infecções por Yersinia pseudotuberculosis/genética , Infecções por Yersinia pseudotuberculosis/microbiologia , Infecções por Yersinia pseudotuberculosis/mortalidadeRESUMO
Commitment to the innate lymphoid cell (ILC) lineage is determined by Id2, a transcriptional regulator that antagonizes T and B cell-specific gene expression programs. Yet how Id2 expression is regulated in each ILC subset remains poorly understood. We identified a cis-regulatory element demarcated by a long non-coding RNA (lncRNA) that controls the function and lineage identity of group 1 ILCs, while being dispensable for early ILC development and homeostasis of ILC2s and ILC3s. The locus encoding this lncRNA, which we termed Rroid, directly interacted with the promoter of its neighboring gene, Id2, in group 1 ILCs. Moreover, the Rroid locus, but not the lncRNA itself, controlled the identity and function of ILC1s by promoting chromatin accessibility and deposition of STAT5 at the promoter of Id2 in response to interleukin (IL)-15. Thus, non-coding elements responsive to extracellular cues unique to each ILC subset represent a key regulatory layer for controlling the identity and function of ILCs.
Assuntos
Regulação da Expressão Gênica , Imunidade Inata/genética , Linfócitos/metabolismo , RNA Longo não Codificante/genética , Sequências Reguladoras de Ácido Nucleico , Animais , Diferenciação Celular , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Montagem e Desmontagem da Cromatina , Feminino , Perfilação da Expressão Gênica , Loci Gênicos , Homeostase , Proteína 2 Inibidora de Diferenciação/genética , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Subpopulações de Linfócitos/imunologia , Subpopulações de Linfócitos/metabolismo , Linfócitos/imunologia , Masculino , Camundongos , Regiões Promotoras Genéticas , Fator de Transcrição STAT5/metabolismo , Transcrição GênicaRESUMO
The inflammatory cytokine tumor necrosis factor (TNF) is necessary for host defense against many intracellular pathogens, including Legionella pneumophila. Legionella causes the severe pneumonia Legionnaires' disease and predominantly affects individuals with a suppressed immune system, including those receiving therapeutic TNF blockade to treat autoinflammatory disorders. TNF induces pro-inflammatory gene expression, cellular proliferation, and survival signals in certain contexts, but can also trigger programmed cell death in others. It remains unclear, however, which of the pleiotropic functions of TNF mediate control of intracellular bacterial pathogens like Legionella. In this study, we demonstrate that TNF signaling licenses macrophages to die rapidly in response to Legionella infection. We find that TNF-licensed cells undergo rapid gasdermin-dependent, pyroptotic death downstream of inflammasome activation. We also find that TNF signaling upregulates components of the inflammasome response, and that the caspase-11-mediated non-canonical inflammasome is the first inflammasome to be activated, with caspase-1 and caspase-8 mediating delayed pyroptotic death. We find that all three caspases are collectively required for optimal TNF-mediated restriction of bacterial replication in macrophages. Furthermore, caspase-8 is required for control of pulmonary Legionella infection. These findings reveal a TNF-dependent mechanism in macrophages for activating rapid cell death that is collectively mediated by caspases-1, -8, and -11 and subsequent restriction of Legionella infection.
Assuntos
Doença dos Legionários , Pneumonia , Camundongos , Animais , Humanos , Caspase 1/metabolismo , Caspase 8/metabolismo , Inflamassomos , Camundongos Knockout , Macrófagos , Caspases/metabolismo , Morte Celular , Fator de Necrose Tumoral alfa/metabolismo , Pneumonia/metabolismo , LicenciamentoRESUMO
Salmonella enterica serovar Typhimurium is a Gram-negative pathogen that uses two distinct type III secretion systems (T3SSs), termed Salmonella pathogenicity island (SPI)-1 and SPI-2, to deliver virulence factors into the host cell. The SPI-1 T3SS enables Salmonella to invade host cells, while the SPI-2 T3SS facilitates Salmonella's intracellular survival. In mice, a family of cytosolic immune sensors, including NAIP1, NAIP2, and NAIP5/6, recognizes the SPI-1 T3SS needle, inner rod, and flagellin proteins, respectively. Ligand recognition triggers assembly of the NAIP/NLRC4 inflammasome, which mediates caspase-1 activation, IL-1 family cytokine secretion, and pyroptosis of infected cells. In contrast to mice, humans encode a single NAIP that broadly recognizes all three ligands. The role of NAIP/NLRC4 or other inflammasomes during Salmonella infection of human macrophages is unclear. We find that although the NAIP/NLRC4 inflammasome is essential for detecting T3SS ligands in human macrophages, it is partially required for responses to infection, as Salmonella also activated the NLRP3 and CASP4/5 inflammasomes. Importantly, we demonstrate that combinatorial NAIP/NLRC4 and NLRP3 inflammasome activation restricts Salmonella replication in human macrophages. In contrast to SPI-1, the SPI-2 T3SS inner rod is not sensed by human or murine NAIPs, which is thought to allow Salmonella to evade host recognition and replicate intracellularly. Intriguingly, we find that human NAIP detects the SPI-2 T3SS needle protein. Critically, in the absence of both flagellin and the SPI-1 T3SS, the NAIP/NLRC4 inflammasome still controlled intracellular Salmonella burden. These findings reveal that recognition of Salmonella SPI-1 and SPI-2 T3SSs and engagement of both the NAIP/NLRC4 and NLRP3 inflammasomes control Salmonella infection in human macrophages.
Assuntos
Inflamassomos/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Infecções por Salmonella/imunologia , Sistemas de Secreção Tipo III/imunologia , Proteínas Adaptadoras de Sinalização CARD/imunologia , Proteínas de Ligação ao Cálcio/imunologia , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteína Inibidora de Apoptose Neuronal/imunologia , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , VirulênciaRESUMO
Injection of effector proteins to block host innate immune signaling is a common strategy used by many pathogenic organisms to establish an infection. For example, pathogenic Yersinia species inject the acetyltransferase YopJ into target cells to inhibit NF-κB and MAPK signaling. To counteract this, detection of YopJ activity in myeloid cells promotes the assembly of a RIPK1-caspase-8 death-inducing platform that confers antibacterial defense. While recent studies revealed that caspase-8 cleaves the pore-forming protein gasdermin D to trigger pyroptosis in macrophages, whether RIPK1 activates additional substrates downstream of caspase-8 to promote host defense is unclear. Here, we report that the related gasdermin family member gasdermin E (GSDME) is activated upon detection of YopJ activity in a RIPK1 kinase-dependent manner. Specifically, GSDME promotes neutrophil pyroptosis and IL-1ß release, which is critical for anti-Yersinia defense. During in vivo infection, IL-1ß neutralization increases bacterial burden in wild-type but not Gsdme-deficient mice. Thus, our study establishes GSDME as an important mediator that counteracts pathogen blockade of innate immune signaling.
Assuntos
Imunidade Inata , Macrófagos/metabolismo , Proteínas de Neoplasias/metabolismo , Neutrófilos/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Yersinia pseudotuberculosis/fisiologia , Células 3T3 , Animais , Citocinas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Piroptose , Infecções por Yersinia pseudotuberculosis/imunologia , Infecções por Yersinia pseudotuberculosis/microbiologiaRESUMO
The apicomplexan parasite Cryptosporidium infects the intestinal epithelium. While infection is widespread around the world, children in resource-poor settings suffer a disproportionate disease burden. Cryptosporidiosis is a leading cause of diarrheal disease, responsible for mortality and stunted growth in children. CD4 T cells are required to resolve this infection, but powerful innate mechanisms control the parasite prior to the onset of adaptive immunity. Here, we use the natural mouse pathogen Cryptosporidium tyzzeri to demonstrate that the inflammasome plays a critical role in initiating this early response. Mice lacking core inflammasome components, including caspase-1 and apoptosis-associated speck-like protein, show increased parasite burden and caspase 1 deletion solely in enterocytes phenocopies whole-body knockout (KO). This response was fully functional in germfree mice and sufficient to control Cryptosporidium infection. Inflammasome activation leads to the release of IL-18, and mice that lack IL-18 are more susceptible to infection. Treatment of infected caspase 1 KO mice with recombinant IL-18 is remarkably efficient in rescuing parasite control. Notably, NOD-like receptor family pyrin domain containing 6 (NLRP6) was the only NLR required for innate parasite control. Taken together, these data support a model of innate recognition of Cryptosporidium infection through an NLRP6-dependent and enterocyte-intrinsic inflammasome that leads to the release of IL-18 required for parasite control.
Assuntos
Criptosporidiose/imunologia , Enterócitos/metabolismo , Inflamassomos/metabolismo , Interleucina-18/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Caspase 1/metabolismo , Cryptosporidium/fisiologia , Enterócitos/imunologia , Interações Hospedeiro-Patógeno , CamundongosRESUMO
Cell death plays a critical role in inflammatory responses. During pyroptosis, inflammatory caspases cleave Gasdermin D (GSDMD) to release an N-terminal fragment that generates plasma membrane pores that mediate cell lysis and IL-1 cytokine release. Terminal cell lysis and IL-1ß release following caspase activation can be uncoupled in certain cell types or in response to particular stimuli, a state termed hyperactivation. However, the factors and mechanisms that regulate terminal cell lysis downstream of GSDMD cleavage remain poorly understood. In the course of studies to define regulation of pyroptosis during Yersinia infection, we identified a line of Card19-deficient mice (Card19lxcn) whose macrophages were protected from cell lysis and showed reduced apoptosis and pyroptosis, yet had wild-type levels of caspase activation, IL-1 secretion, and GSDMD cleavage. Unexpectedly, CARD19, a mitochondrial CARD-containing protein, was not directly responsible for this, as an independently-generated CRISPR/Cas9 Card19 knockout mouse line (Card19Null) showed no defect in macrophage cell lysis. Notably, Card19 is located on chromosome 13, immediately adjacent to Ninj1, which was recently found to regulate cell lysis downstream of GSDMD activation. RNA-seq and western blotting revealed that Card19lxcn BMDMs have significantly reduced NINJ1 expression, and reconstitution of Ninj1 in Card19lxcn immortalized BMDMs restored their ability to undergo cell lysis in response to caspase-dependent cell death stimuli. Card19lxcn mice exhibited increased susceptibility to Yersinia infection, whereas independently-generated Card19Null mice did not, demonstrating that cell lysis itself plays a key role in protection against bacterial infection, and that the increased infection susceptibility of Card19lxcn mice is attributable to loss of NINJ1. Our findings identify genetic targeting of Card19 being responsible for off-target effects on the adjacent gene Ninj1, disrupting the ability of macrophages to undergo plasma membrane rupture downstream of gasdermin cleavage and impacting host survival and bacterial control during Yersinia infection.
Assuntos
Proteínas Adaptadoras de Sinalização CARD/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Macrófagos/metabolismo , Fatores de Crescimento Neural/metabolismo , Yersiniose/patologia , Animais , Macrófagos/microbiologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Piroptose/fisiologia , Yersiniose/metabolismoRESUMO
Innate immune recognition controls adaptive immune responses through multiple mechanisms. The MyD88 signaling adaptor operates in many cell types downstream of Toll-like receptors (TLRs) and interleukin-1 (IL-1) receptor family members. Cell-type-specific functions of MyD88 signaling remain poorly characterized. Here, we have shown that the T cell-specific ablation of MyD88 in mice impairs not only T helper 17 (Th17) cell responses, but also Th1 cell responses. MyD88 relayed signals of TLR-induced IL-1, which became dispensable for Th1 cell responses in the absence of T regulatory (Treg) cells. Treg cell-specific ablation of MyD88 had no effect, suggesting that IL-1 acts on naive CD4(+) T cells instead of Treg cells themselves. Together, these findings demonstrate that IL-1 renders naive CD4(+) T cells refractory to Treg cell-mediated suppression in order to allow their differentiation into Th1 cells. In addition, IL-1 was also important for the generation of functional CD4(+) memory T cells.
Assuntos
Interleucina-1/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Células Th17/imunologia , Imunidade Adaptativa , Animais , Células Cultivadas , Imunidade Inata , Memória Imunológica , Terapia de Imunossupressão , Interleucina-18/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/genética , Especificidade de Órgãos , Receptores de Interleucina-1/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologiaRESUMO
Immune sensing of the Gram-negative bacterial membrane glycolipid lipopolysaccharide (LPS) is both a critical component of host defense against bacterial infection and a contributor to the hyperinflammatory response, potentially leading to sepsis and death. Innate immune activation by LPS is due to the lipid A moiety, an acylated di-glucosamine molecule that can activate inflammatory responses via the extracellular sensor Toll-like receptor 4 (TLR4)/myeloid differentiation 2 (MD2) or the cytosolic sensor caspase-11 (Casp11). The number and length of acyl chains present on bacterial lipid A structures vary across bacterial species and strains, which affects the magnitude of TLR4 and Casp11 activation. TLR4 and Casp11 are thought to respond similarly to various lipid A structures, as tetra-acylated lipid A structures do not activate either sensor, whereas hexa-acylated structures activate both sensors. However, the precise features of lipid A that determine the differential activation of each receptor remain poorly defined, as direct analysis of extracellular and cytosolic responses to the same sources and preparations of LPS/lipid A structures have been limited. To address this question, we used rationally engineered lipid A isolated from a series of bacterial acyl-transferase mutants that produce novel, structurally defined molecules. Intriguingly, we found that the location of specific secondary acyl chains on lipid A resulted in differential recognition by TLR4 or Casp11, providing new insight into the structural features of lipid A required to activate either TLR4 or Casp11. Our findings indicate that TLR4 and Casp11 sense nonoverlapping areas of lipid A chemical space, thereby constraining the ability of Gram-negative pathogens to evade innate immunity.
Assuntos
Lipídeo A , Receptor 4 Toll-Like , Acilação , Animais , Caspases , Lipídeo A/química , Lipopolissacarídeos , Camundongos , Receptor 4 Toll-Like/metabolismoRESUMO
Salmonella enterica serovar Typhimurium is a Gram-negative pathogen that causes diseases ranging from gastroenteritis to systemic infection and sepsis. Salmonella uses type III secretion systems (T3SS) to inject effectors into host cells. While these effectors are necessary for bacterial invasion and intracellular survival, intracellular delivery of T3SS products also enables detection of translocated Salmonella ligands by cytosolic immune sensors. Some of these sensors form multimeric complexes called inflammasomes, which activate caspases that lead to interleukin-1 (IL-1) family cytokine release and pyroptosis. In particular, the Salmonella T3SS needle, inner rod, and flagellin proteins activate the NAIP/NLRC4 inflammasome in murine intestinal epithelial cells (IECs), which leads to restriction of bacterial replication and extrusion of infected IECs into the intestinal lumen, thereby preventing systemic dissemination of Salmonella. While these processes are quite well studied in mice, the role of the NAIP/NLRC4 inflammasome in human IECs remains unknown. Unexpectedly, we found the NAIP/NLRC4 inflammasome is dispensable for early inflammasome responses to Salmonella in both human IEC lines and enteroids. Additionally, NLRP3 and the adaptor protein ASC are not required for inflammasome activation in Caco-2 cells. Instead, we observed a necessity for caspase-4 and gasdermin D pore-forming activity in mediating inflammasome responses to Salmonella in Caco-2 cells. These findings suggest that unlike murine IECs, human IECs do not rely on NAIP/NLRC4 or NLRP3/ASC inflammasomes and instead primarily use caspase-4 to mediate inflammasome responses to Salmonella pathogenicity island 1 (SPI-1)-expressing Salmonella.
Assuntos
Inflamassomos , Animais , Proteínas Reguladoras de Apoptose , Proteínas Adaptadoras de Sinalização CARD , Células CACO-2 , Proteínas de Ligação ao Cálcio , Caspases Iniciadoras , Células Epiteliais/metabolismo , Humanos , Inflamassomos/metabolismo , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína Inibidora de Apoptose Neuronal , Salmonella typhimurium , SorogrupoRESUMO
Detection of Gram-negative bacterial lipid A by the extracellular sensor, myeloid differentiation 2 (MD2)/Toll-like receptor 4 (TLR4), or the intracellular inflammasome sensors, CASP4 and CASP5, induces robust inflammatory responses. The chemical structure of lipid A, specifically its phosphorylation and acylation state, varies across and within bacterial species, potentially allowing pathogens to evade or suppress host immunity. Currently, it is not clear how distinct alterations in the phosphorylation or acylation state of lipid A affect both human TLR4 and CASP4/5 activation. Using a panel of engineered lipooligosaccharides (LOS) derived from Yersinia pestis with defined lipid A structures that vary in their acylation or phosphorylation state, we identified that differences in phosphorylation state did not affect TLR4 or CASP4/5 activation. However, the acylation state differentially impacted TLR4 and CASP4/5 activation. Specifically, all tetra-, penta-, and hexa-acylated LOS variants examined activated CASP4/5-dependent responses, whereas TLR4 responded to penta- and hexa-acylated LOS but did not respond to tetra-acylated LOS or penta-acylated LOS lacking the secondary acyl chain at the 3' position. As expected, lipid A alone was sufficient for TLR4 activation. In contrast, both core oligosaccharide and lipid A were required for robust CASP4/5 inflammasome activation in human macrophages, whereas core oligosaccharide was not required to activate mouse macrophages expressing CASP4. Our findings show that human TLR4 and CASP4/5 detect both shared and nonoverlapping LOS/lipid A structures, which enables the innate immune system to recognize a wider range of bacterial LOS/lipid A and would thereby be expected to constrain the ability of pathogens to evade innate immune detection.
Assuntos
Lipídeo A , Receptor 4 Toll-Like , Acilação , Animais , Humanos , Inflamassomos , Lipídeo A/química , Lipopolissacarídeos , Macrófagos , Camundongos , Receptor 4 Toll-Like/metabolismoRESUMO
The mechanisms by which NLRP3 senses inflammasome-activating stimuli remain poorly defined. In this issue of Immunity, Mitoma et al. (2013) demonstrate that the RNA helicase DHX33 binds to cytosolic dsRNAs to trigger NLRP3 inflammasome activation.