RESUMO
Acetate esters comprise a wide range of products including fragrances and industrial solvents. Biosynthesis of esters offers a promising alternative to chemical synthesis because such routes use renewable carbohydrate resources and minimize the generation of waste. One biochemical method for ester formation relies on the ATF1 gene from Saccharomyces cerevisiae, which encodes alcohol-O-acyltransferase (AAT) which converts acetyl-CoA and an exogenously supplied alcohol into the ester. In this study, the formation of several acetate esters via AAT was examined in Escherichia coli chromosomally expressing citrate synthase variants, which create a metabolic bottleneck at acetyl-CoA. In shake flask cultures, variant strains generated more acetate esters than the strains expressing the wild-type citrate synthase. In a controlled bioreactor, E. coli GltA[A267T] generated 3.9 g propyl acetate in 13 h, corresponding to a yield of 0.155 g propyl acetate/g glucose, which is 18% greater than that obtained by the wild-type GltA control. These results demonstrate the ability of citrate synthase variants to redistribute carbon from central metabolism into acetyl-CoA-derived biochemicals.
RESUMO
Hansen solubility parameters (HSP) of 15 commercially relevant biobased and biodegradable polyesters were experimentally determined by applying a novel approach to the classic solubility study method. In this approach, the extent of swelling in polymer films was determined using a simple equation based on the mass difference between swollen and nonswollen film samples to obtain normalized solvent uptake (N). Using N and HSPiP software, highly accurate HSP values were obtained for all 15 polyesters. Qualitative evaluation of the HSP values was conducted by predicting the miscibility of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHB-co-HHx, 7 mol % HHx) and poly(lactic acid) (PLA) with a novel lignin-based plasticizer (ethyl 3-(4-ethoxy-3-methoxyphenyl)propanoate, EP) with a relative energy difference (RED) less than 0.4. Additionally, an HSP-predicted plasticizer (di(2-ethylhexyl) adipate, DA) with a larger RED (>0.7) was used to demonstrate the effects of less-miscible additives. Plasticized samples were analyzed by differential scanning calorimetry and polarized optical microscopy (POM) to determine the Tg depression, with EP showing linear Tg depression up to 50% plasticizer loading, whereas DA shows minimal Tg depression past 10% loading. Further analysis by POM reveals that the DA phase separates from both polymers at loadings as low as 2.5% (PHB-co-HHx, 7 mol % HHx) and 5% (PLA), while the EP phase separates at a much higher loading of 50% (PHB-co-HHx, 7 mol% HHx) and 30% (PLA).
RESUMO
Nanocrystallites have garnered substantial interest due to their various applications, including catalysis and medical research. Consequently important aspects of synthesis related to control of shape and size through economical and non-hazardous means are desirable. Highly efficient bioreduction-based fabrication approaches that utilize microbes and/or plant extracts are poised to meet these needs. Here we show that the γ-proteobacterium Shewanella oneidensis can reduce tetrachloroaurate (III) ions to produce discrete extracellular spherical gold nanocrystallites. The particles were homogeneously shaped with multiple size distributions and produced under ambient conditions at high yield, 88% theoretical maximum. Further characterization revealed that the particles consist of spheres in the size range of â¼2-50 nm, with an average size of 12±5 nm. The nanoparticles were hydrophilic and resisted aggregation even after several months. Based on our experiments, the particles are likely fabricated by the aid of reducing agents present in the bacterial cell membrane and are capped by a detachable protein/peptide coat. Ultraviolet-visible and Fourier transform infrared spectroscopy, X-ray diffraction, energy dispersive X-ray spectra and transmission electron microscopy measurements confirmed the formation, surface characteristics and crystalline nature of the nanoparticles. The antibacterial activity of these gold nanoparticles was assessed using Gram-negative (Escherichia coli and S. oneidensis) and Gram-positive (Bacillus subtilis) bacterial species. Toxicity assessments showed that the particles were neither toxic nor inhibitory to any of these bacteria.