Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Clin Infect Dis ; 71(16): 2265-2268, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32382733

RESUMO

On human lung parenchymal explants, chloroquine concentration clinically achievable in the lung (100 µM) inhibited the lipopolysaccharide-induced release of TNF-ɑ (by 76%), IL-6 (by 68%), CCL2 (by 72%), and CCL3 (by 67%). Besides its antiviral activity, chloroquine might also mitigate the cytokine storm associated with severe pneumonia caused by coronaviruses.


Assuntos
Cloroquina , Citocinas , Cloroquina/farmacologia , Humanos , Lipopolissacarídeos , Pulmão , Fator de Necrose Tumoral alfa
2.
Pulm Pharmacol Ther ; 49: 46-53, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29337266

RESUMO

BACKGROUND AND PURPOSE: Long-acting muscarinic antagonists (LAMAs) have been recommended for the treatment of chronic obstructive pulmonary disease and (more recently) asthma. However, the in vitro pharmacological profiles of the four LAMAs currently marketed (tiotropium, umeclidinium, aclidinium and glycopyrronium) have not yet been compared (relative to ipratropium) by using the same experimental approach. EXPERIMENTAL APPROACH: With a total of 560 human bronchial rings, we investigated the antagonists' potency, onset and duration of action for inhibition of the contractile response evoked by electrical field stimulation. We also evaluated the antagonists' potency for inhibiting cumulative concentration-contraction curves for acetylcholine and carbachol. KEY RESULTS: The onset and duration of action were concentration-dependent. At submaximal, equipotent concentrations, the antagonists' onsets of action were within the same order of magnitude. However, the durations of action differed markedly. After washout, ipratropium's inhibitory activity decreased rapidly (within 30-90 min) but those of tiotropium and umeclidinium remained stable (at above 70%) for at least 9 h. Aclidinium and glycopyrronium displayed less stable inhibitory effects, with a progressive loss of inhibition at submaximal concentrations. In contrast to ipratropium, all the LAMAs behaved as insurmountable antagonists by decreasing the maximum responses to both acetylcholine and carbachol. CONCLUSIONS AND IMPLICATIONS: The observed differences in the LAMAs' in vitro pharmacological profiles in the human bronchus provide a compelling pharmacological rationale for the differences in the drugs' respective recommended daily doses and frequencies of administration.


Assuntos
Brônquios/efeitos dos fármacos , Ipratrópio/farmacologia , Antagonistas Muscarínicos/farmacologia , Acetilcolina/farmacologia , Idoso , Carbacol/farmacologia , Preparações de Ação Retardada , Relação Dose-Resposta a Droga , Estimulação Elétrica , Feminino , Humanos , Técnicas In Vitro , Ipratrópio/administração & dosagem , Masculino , Antagonistas Muscarínicos/administração & dosagem , Fatores de Tempo
3.
Respir Res ; 18(1): 102, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28535764

RESUMO

BACKGROUND: Tobacco-induced pulmonary vascular disease is partly driven by endothelial dysfunction. The Sonic hedgehog (SHH) pathway is involved in vascular physiology. We sought to establish whether the SHH pathway has a role in pulmonary endothelial dysfunction in smokers. METHODS: The ex vivo endothelium-dependent relaxation of pulmonary artery rings in response to acetylcholine (Ach) was compared in 34 current or ex-smokers and 8 never-smokers. The results were expressed as a percentage of the contraction with phenylephrine. We tested the effects of SHH inhibitors (GANT61 and cyclopamine), an SHH activator (SAG) and recombinant VEGF on the Ach-induced relaxation. The level of VEGF protein in the pulmonary artery ring was measured in an ELISA. SHH pathway gene expression was quantified in reverse transcriptase-quantitative polymerase chain reactions. RESULTS: Ach-induced relaxation was much less intense in smokers than in never-smokers (respectively 24 ± 6% and 50 ± 7% with 10-4M Ach; p = 0.028). All SHH pathway genes were expressed in pulmonary artery rings from smokers. SHH inhibition by GANT61 reduced Ach-induced relaxation and VEGF gene expression in the pulmonary artery ring. Recombinant VEGF restored the ring's endothelial function. VEGF gene and protein expression levels in the pulmonary artery rings were positively correlated with the degree of Ach-induced relaxation and negatively correlated with the number of pack-years. CONCLUSION: SHH pathway genes and proteins are expressed in pulmonary artery rings from smokers, where they modulate endothelial function through VEGF.


Assuntos
Endotélio Vascular/metabolismo , Proteínas Hedgehog/biossíntese , Artéria Pulmonar/metabolismo , Fumar/metabolismo , Fator A de Crescimento do Endotélio Vascular/biossíntese , Acetilcolina/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Feminino , Proteínas Hedgehog/antagonistas & inibidores , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas de Cultura de Órgãos , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Fumantes , Fumar/patologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , Adulto Jovem
4.
Respir Res ; 18(1): 126, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28637505

RESUMO

BACKGROUND: ß2-adrenoceptor agonists have been shown to reduce the lipopolysaccharide (LPS)-induced cytokine release by human monocyte-derived macrophages (MDMs). We compare the expression of ß2-adrenoceptors and the inhibitory effect of formoterol and salmeterol on the LPS-induced release of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6 and a range of chemokines (CCL2, 3, 4, and IL-8) by human lung macrophages (LMs) and MDMs. METHODS: LMs were isolated from patients undergoing resection and MDMs were obtained from blood monocytes in the presence of GM-CSF. LMs and MDMs were incubated in the absence or presence of formoterol or salmeterol prior to stimulation with LPS. The effects of formoterol were also assessed in the presence of the phosphodiesterase inhibitor roflumilast. RESULTS: LPS-induced cytokine production was higher in LMs than in MDMs. Salmeterol and formoterol exerted an inhibitory effect on the LPS-induced production of TNF-α, IL-6, CCL2, CCL3, and CCL4 in MDMs. In contrast, the ß2-adrenoceptor agonists were devoid of any effect on LMs - even in the presence of roflumilast. The expression of ß2-adrenergic receptors was detected on Western blots in MDMs but not in LMs. CONCLUSIONS: Concentrations of ß2-adrenoceptor agonists that cause relaxation of the human bronchus can inhibit cytokine production by LPS-stimulated MDMs but not by LMs.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Citocinas/metabolismo , Pulmão/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Idoso , Células Cultivadas , Citocinas/agonistas , Relação Dose-Resposta a Droga , Feminino , Humanos , Pulmão/citologia , Pulmão/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Monócitos/efeitos dos fármacos
5.
Respir Res ; 17(1): 151, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27842540

RESUMO

BACKGROUND: In vivo, the airways are constantly subjected to oscillatory strain (due to tidal breathing during spontaneous respiration) and (in the event of mechanical ventilation) positive pressure. This exposure is especially problematic for the cartilage-free bronchial tree. The effects of cyclic stretching (other than high-force stretching) have not been extensively characterized. Hence, the objective of the present study was to investigate the functional and transcriptional response of human bronchi to repetitive mechanical stress caused by low-frequency, low-force cyclic stretching. METHODS: After preparation and equilibration in an organ bath, human bronchial rings from 66 thoracic surgery patients were stretched in 1-min cycles of elongation and relaxation over a 60-min period. For each segment, the maximal tension corresponded to 80% of the reference contraction (the response to 3 mM acetylcholine). The impact of cyclic stretching (relative to non-stretched controls) was examined by performing functional assessments (epithelium removal and incubation with sodium channel agonists/antagonists or inhibitors of intracellular pathways), biochemical assays of the organ bath fluid (for detecting the release of pro-inflammatory cytokines), and RT-PCR assays of RNA isolated from tissue samples. RESULTS: The application of low-force cyclic stretching to human bronchial rings for 60 min resulted in an immediate, significant increase in bronchial basal tone, relative to non-cyclic stretching (4.24 ± 0.16 g vs. 3.28 ± 0.12 g, respectively; p < 0.001). This cyclic stimulus also increased the affinity for acetylcholine (-log EC50: 5.67 ± 0.07 vs. 5.32 ± 0.07, respectively; p p < 0.001). Removal of airway epithelium and pretreatment with the Rho-kinase inhibitor Y27632 and inward-rectifier K+ or L-type Ca2+ channel inhibitors significantly modified the basal tone response. Exposure to L-NAME had opposing effects in all cases. Pro-inflammatory pathways were not involved in the response; cyclic stretching up-regulated the early mRNA expression of MMP9 only, and was not associated with changes in organ bath levels of pro-inflammatory mediators. CONCLUSION: Low-frequency, low-force cyclic stretching of whole human bronchi induced a myogenic response rather than activation of the pro-inflammatory signaling pathways mediated by mechanotransduction.


Assuntos
Brônquios/fisiologia , Mecanotransdução Celular , Contração Muscular , Músculo Liso/fisiologia , Receptores Pulmonares de Alongamento/fisiologia , Idoso , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Citocinas/genética , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Técnicas In Vitro , Masculino , Mecanotransdução Celular/efeitos dos fármacos , Pessoa de Meia-Idade , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Receptores Pulmonares de Alongamento/efeitos dos fármacos , Receptores Pulmonares de Alongamento/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estresse Mecânico , Fatores de Tempo , Transcrição Gênica
6.
Int Immunopharmacol ; 128: 111557, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266451

RESUMO

BACKGROUND AND PURPOSE: Lung macrophages (LMs) are critically involved in respiratory diseases. The primary objective of the present study was to determine whether or not an adenosine analog (NECA) and prostaglandin E2 (PGE2) affected the interleukin (IL)-4- and IL-13-induced release of M2a chemokines (CCL13, CCL17, CCL18, and CCL22) by human LMs. EXPERIMENTAL APPROACH: Primary macrophages isolated from resected human lungs were incubated with NECA, PGE2, roflumilast, or vehicle and stimulated with IL-4 or IL-13 for 24 h. The levels of chemokines and PGE2 in the culture supernatants were measured using ELISAs and enzyme immunoassays. KEY RESULTS: Exposure to IL-4 (10 ng/mL) and IL-13 (50 ng/mL) was associated with greater M2a chemokine production but not PGE2 production. PGE2 (10 ng/mL) and NECA (10-6 M) induced the production of M2a chemokines to a lesser extent but significantly enhanced the IL-4/IL-13-induced production of these chemokines. At either a clinically relevant concentration (10-9 M) or at a concentration (10-7 M) that fully inhibited phosphodiesterase 4 (PDE4) activity, roflumilast did not increase the production of M2a chemokines and did not modulate their IL-13-induced production, regardless of the presence or absence of PGE2. CONCLUSIONS: NECA and PGE2 enhanced the IL-4/IL-13-induced production of M2a chemokines. The inhibition of PDE4 by roflumilast did not alter the production of these chemokines. These results contrast totally with the previously reported inhibitory effects of NECA, PGE2, and PDE4 inhibitors on the lipopolysaccharide-induced release of tumor necrosis factor alpha and M1 chemokines in human LMs.


Assuntos
Adenosina , Aminopiridinas , Benzamidas , Dinoprostona , Humanos , Dinoprostona/farmacologia , Adenosina/farmacologia , Interleucina-4/farmacologia , Interleucina-13/farmacologia , Adenosina-5'-(N-etilcarboxamida)/farmacologia , Quimiocinas , Macrófagos , Fator de Necrose Tumoral alfa/farmacologia , Quimiocina CCL17 , Pulmão , Células Cultivadas , Ciclopropanos
7.
Respir Res ; 14: 134, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24266887

RESUMO

BACKGROUND: Bitter-taste receptors (TAS2Rs) have recently been involved in the relaxation of mouse and guinea pig airways, and increased expression of TAS2Rs was shown in blood leucocytes from asthmatic children. We sought to identify and characterize the TAS2Rs expressed in isolated human bronchi and the subtypes involved in relaxation. METHODS: Human bronchi were isolated from resected lungs and TAS2R transcripts were assessed with RT-qPCR. Relaxation to TAS2R agonists was tested in organ bath in the presence or absence of pharmacological modulators of the signalling pathways involved in bronchial relaxation. RESULTS: We detected the expression of TAS2R transcripts in human bronchi. The non-selective agonists chloroquine, quinine, caffeine, strychnine and diphenidol produced a bronchial relaxation as effective and potent as theophylline but much less potent than formoterol and isoproterenol. Denatonium, saccharin and colchicine did not produce relaxation. Receptor expression analysis together with the use of selective agonists suggest a predominant role for TAS2R5, 10 and 14 in bitter taste agonist-induced relaxation. The mechanism of relaxation was independent of the signalling pathways modulated by conventional bronchodilators and may be partly explained by the inhibition of phosphatidylinositol-3-kinases. CONCLUSIONS: The TAS2Rs may constitute a new therapeutic target in chronic obstructive lung diseases such as asthma.


Assuntos
Brônquios/metabolismo , Broncodilatadores/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Paladar/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Brônquios/efeitos dos fármacos , Broncoconstrição/efeitos dos fármacos , Broncoconstrição/fisiologia , Cafeína/farmacologia , Cloroquina/farmacologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Piperidinas/farmacologia , Receptores de Superfície Celular/agonistas , Receptores de Superfície Celular/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Estricnina/farmacologia
8.
Front Pharmacol ; 13: 896167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059986

RESUMO

Background: The Janus kinase (JAK) 1/2 inhibitor ruxolitinib has been approved in an indication of myelofibrosis and is a candidate for the treatment of a number of inflammatory or autoimmune diseases. We assessed the effects of ruxolitinib on lipopolysaccharide (LPS)- and poly (I:C)-induced cytokine production by human lung macrophages (LMs) and on the LMs' phagocytic activity. Methods: Human LMs were isolated from patients operated on for lung carcinoma. The LMs were cultured with ruxolitinib (0.5 × 10-7 M to 10-5 M) or budesonide (10-11 to 10-8 M) and then stimulated with LPS (10 ng·ml-1) or poly (I:C) (10 µg·ml-1) for 24 h. Cytokines released by the LMs into the supernatants were measured using ELISAs. The phagocytosis of labelled bioparticles was assessed using flow cytometry. Results: Ruxolitinib inhibited both the LPS- and poly (I:C)-stimulated production of tumor necrosis factor alpha, interleukin (IL)-6, IL-10, chemokines CCL2, and CXCL10 in a concentration-dependent manner. Ruxolitinib also inhibited the poly (I:C)- induced (but not the LPS-induced) production of IL-1ß. Budesonide inhibited cytokine production more strongly than ruxolitinib but failed to mitigate the production of CXCL10. The LMs' phagocytic activity was not impaired by the highest tested concentration (10-5 M) of ruxolitinib. Conclusion: Clinically relevant concentrations of ruxolitinib inhibited the LPS- and poly (I:C)-stimulated production of cytokines by human LMs but did not impair their phagocytic activity. Overall, ruxolitinib's anti-inflammatory activities are less intense than (but somewhat different from) those of budesonide-particularly with regard to the production of the corticosteroid-resistant chemokine CXCL-10. Our results indicate that treatment with a JAK inhibitor might be a valuable anti-inflammatory strategy in chronic obstructive pulmonary disease, Th1-high asthma, and both viral and non-viral acute respiratory distress syndromes (including coronavirus disease 2019).

9.
Fundam Clin Pharmacol ; 35(4): 725-731, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33145785

RESUMO

Roflumilast is an oral, add-on option for treating patients with severe COPD and frequent exacerbations despite optimal therapy with inhaled drugs. The present study focused on whether this phosphodiesterase 4 inhibitor and its active metabolite roflumilast N-oxide affect the tone of human bronchial rings. We also investigated the interactions between roflumilast, roflumilast N-oxide and the long-acting ß2 -agonist formoterol with regard to the relaxation of isolated human bronchial rings at basal tone or pre-contracted with histamine. Our results demonstrated for the first time that at a clinically relevant concentration (1 nm), roflumilast N-oxide and roflumilast induce a weak relaxation of the isolated human bronchus either at resting tone (22% and 16%, respectively) or even weaker on pre-contracted bronchus with histamine (7% and 5%, respectively). In addition, the combination of formoterol with roflumilast or roflumilast N-oxide is more potent than each component alone for relaxing pre-contracted isolated bronchi - the apparent pD2 of formoterol was significantly reduced for the threshold concentration of 1 nm of the phosphodiesterase 4 inhibitors by a factor of 2.4 for roflumilast N-oxide and 1.9 for roflumilast. The full inhibition of phosphodiesterase 4 activity is achieved at 100 nm but this high concentration only caused partial relaxations of the human bronchi. At a clinically relevant concentration, these oral phosphodiesterase 4 inhibitors are not effective direct bronchodilators but could enhance the efficacy of inhaled long-acting ß2-agonists.


Assuntos
Aminopiridinas/farmacologia , Benzamidas/farmacologia , Brônquios/efeitos dos fármacos , Broncodilatadores/farmacologia , Inibidores da Fosfodiesterase 4/farmacologia , Aminopiridinas/administração & dosagem , Aminopiridinas/uso terapêutico , Benzamidas/administração & dosagem , Benzamidas/uso terapêutico , Brônquios/fisiologia , Broncodilatadores/administração & dosagem , Broncodilatadores/uso terapêutico , Ciclopropanos/administração & dosagem , Ciclopropanos/farmacologia , Ciclopropanos/uso terapêutico , Feminino , Fumarato de Formoterol/administração & dosagem , Fumarato de Formoterol/farmacologia , Fumarato de Formoterol/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , Inibidores da Fosfodiesterase 4/administração & dosagem , Inibidores da Fosfodiesterase 4/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
10.
Front Pharmacol ; 12: 718929, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512346

RESUMO

Background: Obesity is associated with an elevated risk of severe respiratory infections and inflammatory lung diseases. The objectives were to investigate 1) the production of adiponectin by human lung explants, 2) the expression of the adiponectin receptors AdipoR1 and AdipoR2 by human lung macrophages (LMs), and 3) the impact of recombinant human adiponectin and a small-molecule APN receptor agonist (AdipoRon) on LMs activation. Material and methods: Human parenchyma explants and LMs were isolated from patients operated for carcinoma. The LMs were cultured with recombinant adiponectin or AdipoRon and stimulated with lipopolysaccharide (10 ng ml-1), poly (I:C) (10 µg ml-1) or interleukin (IL)-4 (10 ng ml-1) for 24 h. Cytokines or adiponectin, released by explants or LMs, were measured using ELISAs. The mRNA levels of AdipoR1 and AdipoR2 were determined using real-time quantitative PCR. AdipoRs expression was also assessed with confocal microscopy. Results: Adiponectin was released by lung explants at a level negatively correlated with the donor's body mass index. AdipoR1 and AdipoR2 were both expressed in LMs. Adiponectin (3-30 µg ml-1) and AdipoRon (25-50 µM) markedly inhibited the LPS- and poly (I:C)-induced release of Tumor Necrosis Factor-α, IL-6 and chemokines (CCL3, CCL4, CCL5, CXCL1, CXCL8, CXCL10) and the IL-4-induced release of chemokines (CCL13, CCL17, CCL22) in a concentration-dependent manner. Recombinant adiponectin produced in mammalian cells (lacking low molecular weight isoforms) had no effects on LMs. Conclusion and implications: The low-molecular-weight isoforms of adiponectin and AdipoRon have an anti-inflammatory activity in the lung environment. Targeting adiponectin receptors may constitute a new means of controlling airways inflammation.

11.
J Innate Immun ; 12(1): 63-73, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30557876

RESUMO

BACKGROUND: The Toll-like receptor (TLR) family is involved in the recognition of and response to microbial infections. These receptors are expressed in leukocytes. TLR stimulation induces the production of proinflammatory cytokines and chemokines. Given that human lung macrophages (LMs) constitute the first line of defense against inhaled pathogens, the objective of this study was to investigate the expression and function of TLR subtypes in this cell population. METHODS: Human primary LMs were obtained from patients undergoing surgical resection. The RNA and protein expression levels of TLRs, chemokines, and cytokines were assessed after incubation with subtype-selective agonists. RESULTS: In human LMs, the TLR expression level varied from one subtype to another. Stimulation with subtype-selective agonists induced an intense, concentration- and time-dependent increase in the production of chemokines and cytokines. TLR4 stimulation induced the strongest effect, whereas TLR9 stimulation induced a much weaker response. CONCLUSIONS: The stimulation of TLRs in human LMs induces intense cytokine and chemokine production, a characteristic of the proinflammatory M1 macrophage phenotype.


Assuntos
Citocinas/metabolismo , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Receptor 4 Toll-Like/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Idoso , Diferenciação Celular , Células Cultivadas , Feminino , Humanos , Ativação de Macrófagos , Masculino , Pessoa de Meia-Idade , Células Th1/imunologia
12.
Front Pharmacol ; 11: 598702, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363471

RESUMO

Background: Roflumilast is an option for treating patients with severe COPD and frequent exacerbations despite optimal therapy with inhaled drugs. The present study focused on whether the phosphodiesterase (PDE) 4 inhibitor roflumilast and its active metabolite roflumilast N-oxide affect the release of tumor necrosis factor (TNF)-α and chemokines by lipopolysaccharide (LPS)-stimulated human bronchial explants. We also investigated the interactions between roflumilast, roflumilast N-oxide and the ß2-agonist formoterol with regard to cytokine release by the bronchial preparations. Methods: Bronchial explants from resected lungs were incubated with roflumilast, roflumilast N-oxide and/or formoterol and then stimulated with LPS. An ELISA was used to measure levels of TNF-α and chemokines in the culture supernatants. Results: At a clinically relevant concentration (1 nM), roflumilast N-oxide and roflumilast consistently reduced the release of TNF-α, CCL2, CCL3, CCL4, CCL5 and CXCL9 (but not CXCL1, CXCL5, CXCL8 and IL-6) from human bronchial explants. Formoterol alone decreased the release of TNF-α, CCL2, and CCL3. The combination of formoterol with roflumilast (1 nM) was more potent than roflumilast alone for inhibiting the LPS-induced release of TNF-α, CCL2, CCL3, CCL4, and CXCL9 by the bronchial explants. Conclusions: At a clinically relevant concentration, roflumilast N-oxide and its parent compound, roflumilast, reduced the LPS-induced production of TNF-α and chemokines involved in monocyte and T-cell recruitment but did not alter the release of chemokines involved in neutrophil recruitment. The combination of formoterol with roflumilast enhanced the individual drugs' anti-inflammatory effects.

13.
Front Pharmacol ; 11: 56, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32132922

RESUMO

BACKGROUND: Obesity is associated with an elevated risk of respiratory infections and inflammatory lung diseases. The objective was to investigate (i) the effects of adipokines (adiponectin (APN), leptin, chemerin, and visfatin) on the production of cytokines by unstimulated and poly(I:C)- and TNF-α-activated human primary bronchial epithelial cells (hBECs), (ii) the cells' expression of the APN receptors (AdipoR1 and AdipoR2), and (iii) the cells' production of APN. METHODS: The hBECs were isolated from patients undergoing surgery for lung carcinoma. The cells were then cultured with human recombinant adipokines in the absence or presence of TNF-α or poly(I:C) for 24 h. Supernatant levels of cytokines (IL-6, CCL2, CCL5, CCL20, CXCL1, CXCL8) and APN were measured using ELISAs. The mRNA levels of AdipoR1 and AdipoR2 in hBECs were determined using a real-time quantitative PCR. RESULTS: Of the four adipokines tested, only APN significantly influenced the basal production and the TNF-α poly(I:C)-induced production of cytokines by hBECs. APN (3-30 µg.ml-1) was associated with greater basal production of IL-6, CCL20, and CXCL8, lower basal production of CCL2 and CXCL1 and no difference in CCL5 production. APN inhibited the poly(I:C)-induced production of these five cytokines and the TNF-α-induced production of CCL2 and CXCL1. AdipoR1 and AdipoR2 were both expressed in hBECs. In contrast to human bronchial explants, isolated hBECs did not produce APN. CONCLUSIONS: The APN concentrations are abnormally low in obese individuals, and this fall may contribute to the susceptibility to viral lung infections and the severity of these infections in obese individuals.

14.
PLoS One ; 15(4): e0230813, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32267860

RESUMO

Lung macrophages (LM) are in the first line of defense against inhaled pathogens and can undergo phenotypic polarization to the proinflammatory M1 after stimulation with Toll-like receptor agonists. The objective of the present work was to characterize the metabolic alterations occurring during the experimental M1 LM polarization. Human LM were obtained from resected lungs and cultured for 24 hrs in medium alone or with 10 ng.mL-1 lipopolysaccharide. Cells and culture supernatants were subjected to extraction for metabolomic analysis with high-resolution LC-MS (HILIC and reverse phase -RP- chromatography in both negative and positive ionization modes) and GC-MS. The data were analyzed with R and the Worklow4Metabolomics and MetaboAnalyst online infrastructures. A total of 8,741 and 4,356 features were detected in the intracellular and extracellular content, respectively, after the filtering steps. Pathway analysis showed involvement of arachidonic acid metabolism, tryptophan metabolism and Krebs cycle in the response of LM to LPS, which was confirmed by the specific quantitation of selected compounds. This refined analysis highlighted a regulation of the kynurenin pathway as well as the serotonin biosynthesis pathway, and an involvement of aspartate-arginosuccinate shunt in the malate production. Macrophages M1 polarization is accompanied by changes in the cell metabolome, with the differential expression of metabolites involved in the promotion and regulation of inflammation and antimicrobial activity. The analysis of this macrophage immunometabolome may be of interest for the understanding of the pathophysiology of lung inflammatory disesases.


Assuntos
Ácido Argininossuccínico/metabolismo , Ácido Aspártico/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Triptofano/metabolismo , Idoso , Células Cultivadas , Feminino , Humanos , Inflamação/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/fisiologia , Masculino , Pessoa de Meia-Idade , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-31479891

RESUMO

Untargeted metabolomics of human plasma with mass spectrometry is of particular interest in medical research to explore pathophysiology, find disease biomarkers or for the understanding of the response to pharmacotherapy. Since analytical performances may be impacted by the laboratory environment and the acquisition method settings, the objectives of this study were to assess the role of interfering compounds and to propose an acquisition method to maximize the metabolome coverage for human plasma metabolomic analysis. Human plasma samples were processed with liquid/liquid extraction then analysed with HILIC-high resolution mass spectrometry. A method with a single m/z range was compared to four methods with different split acquisition ranges and four sets of ionization source parameters were compared. The data were analysed with the R software and on the Worklow4Metabolomics online platform. The major interfering compounds were identified in blank samples where they accounted for up to 86% of the signal intensity. Splitting the acquisition range into 3 m/z ranges improved the number of detected features, the number of features with proposed annotation in the Human Metabolome Database, as well as signal intensity throughout the whole m/z range. The method performing best was the one using three m/z ranges of approximatively the same extent. Ionization source parameters also strongly affected the number of detected features. Splitting the acquisition range into 3 m/z ranges with optimized ionization source parameters allows a comprehensive analysis of the human plasma metabolome with perspectives for applications to pathophysiological studies.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Metabolômica/métodos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Metaboloma/fisiologia , Metabolômica/normas
16.
Front Physiol ; 10: 1267, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632299

RESUMO

BACKGROUND: Bitter-taste receptors (TAS2Rs) are involved in airway relaxation but are also expressed in human blood leukocytes. We studied TAS2R expression and the effects of TAS2R agonists on the lipopolysaccharide (LPS)-induced cytokine release in human lung macrophages (LMs). METHODS: Lung macrophages were isolated from patients undergoing surgery for carcinoma. We used RT-qPCR to measure transcripts of 16 TAS2Rs (TAS2Rs 3/4/5/7/8/9/10/14/19/20/31/38/39/43/45 and 46) in unstimulated and LPS-stimulated (10 ng.mL-1) LMs. The macrophages were also incubated with TAS2R agonists for 24 h. Supernatant levels of the cytokines TNF-α, CCL3, CXCL8 and IL-10 were measured using ELISAs. RESULTS: The transcripts of all 16 TAS2Rs were detected in macrophages. The addition of LPS led to an increase in the expression of most TAS2Rs, which was significant for TAS2R7 and 38. Although the promiscuous TAS2R agonists, quinine and denatonium, inhibited the LPS-induced release of TNF-α, CCL3 and CXCL8, diphenidol was inactive. Partially selective agonists (dapsone, colchicine, strychnine, and chloroquine) and selective agonists [erythromycin (TAS2R10), phenanthroline (TAS2R5), ofloxacin (TAS2R9), and carisoprodol (TAS2R14)] also suppressed the LPS-induced cytokine release. In contrast, two other agonists [sodium cromoglycate (TAS2R20) and saccharin (TAS2R31 and 43)] were inactive. TAS2R agonists suppressed IL-10 production - suggesting that this anti-inflammatory cytokine is not involved in the inhibition of cytokine production. CONCLUSION: Human LMs expressed TAS2Rs. Experiments with TAS2R agonists' suggested the involvement of TAS2Rs 3, 4, 5, 9, 10, 14, 30, 39 and 40 in the inhibition of cytokine production. TAS2Rs may constitute new drug targets in inflammatory obstructive lung disease.

17.
PLoS One ; 9(10): e111350, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25360795

RESUMO

BACKGROUND: Regular use of ß2-agonists may enhance non-specific airway responsiveness. The wingless/integrated (Wnt) signaling pathways are responsible for several cellular processes, including airway inflammation and remodeling while cAMP-PKA cascade can activate the Wnt signaling. We aimed to investigate whether the Wnt signaling pathways are involved in the bronchial hyperresponsiveness induced by prolonged exposure to ß2-adrenoceptor agonists in human isolated airways. METHODS: Bronchi were surgically removed from 44 thoracic surgery patients. After preparation, bronchial rings and primary cultures of bronchial epithelial cells were incubated with fenoterol (0.1 µM, 15 hours, 37 °C), a ß2-agonist with high intrinsic efficacy. The effects of inhibitors/blockers of Wnt signaling on the fenoterol-induced airway sensitization were examined and the impact of fenoterol exposure on the mRNA expression of genes interacting with Wnt signaling or cAMP-PKA cascade was assessed in complete bronchi and in cultured epithelial cells. RESULTS: Compared to paired controls, fenoterol-sensitization was abolished by inhibition/blockage of the Wnt/ß-catenin signaling, especially the cell-surface LRP5/6 co-receptors or Fzd receptors (1 µM SFRP1 or 1 µM DKK1) and the nuclear recruitment of TCF/LEF transcriptions factors (0.3 µM FH535). Wnt proteins secretion did not seem to be involved in the fenoterol-induced sensitization since the mRNA expression of Wnt remained low after fenoterol exposure and the inactivator of Wnt secretion (1 µM IWP2) had no effect on the fenoterol-sensitization. Fenoterol exposure did not change the mRNA expression of genes regulating Wnt signaling or cAMP-PKA cascade. CONCLUSIONS: Collectively, our pharmacological investigations indicate that fenoterol-sensitization is modulated by the inhibition/blockage of canonical Wnt/ß-catenin pathway, suggesting a phenomenon of biased agonism in connection with the ß2-adrenoceptor stimulation. Future experiments based on the results of the present study will be needed to determine the impact of prolonged fenoterol exposure on the extra- and intracellular Wnt signaling pathways at the protein expression level.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Brônquios/efeitos dos fármacos , Brônquios/imunologia , Hipersensibilidade/etiologia , Receptores Adrenérgicos beta 2/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Idoso , Brônquios/patologia , Cálcio/metabolismo , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Polaridade Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Epiteliais/efeitos dos fármacos , Espaço Extracelular/efeitos dos fármacos , Espaço Extracelular/metabolismo , Feminino , Fenoterol/farmacologia , Humanos , Hipersensibilidade/metabolismo , Hipersensibilidade/patologia , Masculino , Fatores de Tempo , Proteínas Wnt/antagonistas & inibidores , Proteínas Wnt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA