Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 628(8007): 299-305, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438066

RESUMO

Perovskite solar cells (PSCs) are among the most promising photovoltaic technologies owing to their exceptional optoelectronic properties1,2. However, the lower efficiency, poor stability and reproducibility issues of large-area PSCs compared with laboratory-scale PSCs are notable drawbacks that hinder their commercialization3. Here we report a synergistic dopant-additive combination strategy using methylammonium chloride (MACl) as the dopant and a Lewis-basic ionic-liquid additive, 1,3-bis(cyanomethyl)imidazolium chloride ([Bcmim]Cl). This strategy effectively inhibits the degradation of the perovskite precursor solution (PPS), suppresses the aggregation of MACl and results in phase-homogeneous and stable perovskite films with high crystallinity and fewer defects. This approach enabled the fabrication of perovskite solar modules (PSMs) that achieved a certified efficiency of 23.30% and ultimately stabilized at 22.97% over a 27.22-cm2 aperture area, marking the highest certified PSM performance. Furthermore, the PSMs showed long-term operational stability, maintaining 94.66% of the initial efficiency after 1,000 h under continuous one-sun illumination at room temperature. The interaction between [Bcmim]Cl and MACl was extensively studied to unravel the mechanism leading to an enhancement of device properties. Our approach holds substantial promise for bridging the benchtop-to-rooftop gap and advancing the production and commercialization of large-area perovskite photovoltaics.

2.
Angew Chem Int Ed Engl ; 63(18): e202320152, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38437457

RESUMO

Dopant-free hole transporting materials (HTMs) is significant to the stability of perovskite solar cells (PSCs). Here, we developed a novel star-shape arylamine HTM, termed Py-DB, with a pyrene core and carbon-carbon double bonds as the bridge units. Compared to the reference HTM (termed Py-C), the extension of the planar conjugation backbone endows Py-DB with typical intermolecular π-π stacking interactions and excellent solubility, resulting in improved hole mobility and film morphology. In addition, the lower HOMO energy level of the Py-DB HTM provides efficient hole extraction with reduced energy loss at the perovskite/HTM interface. Consequently, an impressive power conversion efficiency (PCE) of 24.33 % was achieved for dopant-free Py-DB-based PSCs, which is the highest PCE for dopant-free small molecular HTMs in n-i-p configured PSCs. The dopant-free Py-DB-based device also exhibits improved long-term stability, retaining over 90 % of its initial efficiency after 1000 h exposure to 25 % humidity at 60 °C. These findings provide valuable insights and approaches for the further development of dopant-free HTMs for efficient and reliable PSCs.

3.
Angew Chem Int Ed Engl ; 62(29): e202304350, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37184396

RESUMO

Hole transport materials (HTMs) are a key component of perovskite solar cells (PSCs). The small molecular 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl)-amine-9,9'-spirobifluorene (spiro-OMeTAD, termed "Spiro") is the most successful HTM used in PSCs, but its versatility is imperfect. To improve its performance, we developed a novel spiro-type HTM (termed "DP") by substituting four anisole units on Spiro with 4-methoxybiphenyl moieties. By extending the π-conjugation of Spiro in this way, the HOMO level of the HTM matches well with the perovskite valence band, enhancing hole mobility and increasing the glass transition temperature. DP-based PSC achieves high power conversion efficiencies (PCEs) of 25.24 % for small-area (0.06 cm2 ) devices and 21.86 % for modules (designated area of 27.56 cm2 ), along with the certified efficiency of 21.78 % on a designated area of 27.86 cm2 . The encapsulated DP-based devices maintain 95.1 % of the initial performance under ISOS-L-1 conditions after 2560 hours and 87 % at the ISOS-L-3 conditions over 600 hours.

4.
Neurobiol Dis ; 63: 155-64, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24269916

RESUMO

Angiogenesis is thought to decrease stroke size and improve behavioral outcomes and therefore several clinical trials are seeking to augment it. Galectin-3 (Gal-3) expression increases after middle cerebral artery occlusion (MCAO) and has been proposed to limit damage 3days after stroke. We carried out mild MCAO that damages the striatum but spares the cerebral cortex and SVZ. Gal-3 gene deletion prevented vascular endothelial growth factor (VEGF) upregulation after MCAO. This inhibited post-MCAO increases in endothelial proliferation and angiogenesis in the striatum allowing us to uniquely address the function of angiogenesis in this model of stroke. Apoptosis and infarct size were unchanged in Gal-3(-/-) mice 7 and 14 days after MCAO, suggesting that angiogenesis does not affect lesion size. Microglial and astrocyte activation/proliferation after MCAO was similar in wild type and Gal-3(-/-) mice. In addition, openfield activity, motor hemiparesis, proprioception, reflex, tremors and grooming behaviors were essentially identical between WT and Gal-3(-/-) mice at 1, 3, 7, 10 and 14 days after MCAO, suggesting that penumbral angiogenesis has limited impact on behavioral recovery. In addition to angiogenesis, increased adult subventricular zone (SVZ) neurogenesis is thought to provide neuroprotection after stroke in animal models. SVZ neurogenesis and migration to lesion were overall unaffected by the loss of Gal-3, suggesting no compensation for the lack of angiogenesis in Gal-3(-/-) mice. Because angiogenesis and neurogenesis are usually coordinately regulated, identifying their individual effects on stroke has hitherto been difficult. These results show that Gal-3 is necessary for angiogenesis in stroke in a VEGF-dependant manner, but suggest that angiogenesis may be dispensable for post-stroke endogenous repair, therefore drawing into question the clinical utility of augmenting angiogenesis.


Assuntos
Indutores da Angiogênese/metabolismo , Galectina 3/deficiência , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/genética , Transtornos Mentais/etiologia , Recuperação de Função Fisiológica/genética , Animais , Encéfalo/metabolismo , Infarto Encefálico/etiologia , Infarto Encefálico/patologia , Ventrículos Cerebrais/patologia , Circulação Cerebrovascular/genética , Modelos Animais de Doenças , Proteína Duplacortina , Galectina 3/genética , Regulação da Expressão Gênica/genética , Gliose/etiologia , Infarto da Artéria Cerebral Média/patologia , Masculino , Transtornos Mentais/genética , Camundongos , Camundongos Knockout , Neovascularização Patológica , Neurogênese/genética , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Cereb Cortex ; 23(3): 647-59, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22414771

RESUMO

Subventricular zone (SVZ) astrocytes and ependymal cells are both derived from radial glia and may have similar gliotic reactions after stroke. Diminishing SVZ neurogenesis worsens outcomes in mice, yet the effects of stroke on SVZ astrocytes and ependymal cells are poorly understood. We used mouse experimental stroke to determine if SVZ astrocytes and ependymal cells assume similar phenotypes and if stroke impacts their functions. Using lateral ventricular wall whole mount preparations, we show that stroke caused SVZ reactive astrocytosis, disrupting the neuroblast migratory scaffold. Also, SVZ vascular density and neural proliferation increased but apoptosis did not. In contrast to other reports, ependymal denudation and cell division was never observed. Remarkably, however, ependymal cells assumed features of reactive astrocytes post stroke, robustly expressing de novo glial fibrillary acidic protein, enlargening and extending long processes. Unexpectedly, stroke disrupted motile cilia planar cell polarity in ependymal cells. This suggested ciliary function was affected and indeed ventricular surface flow was slower and more turbulent post stroke. Together, these results demonstrate that in response to stroke there is significant SVZ reorganization with implications for both pathophysiology and therapeutic strategies.


Assuntos
Cílios/patologia , Epêndima/patologia , Gliose/patologia , Ventrículos Laterais/patologia , Acidente Vascular Cerebral/patologia , Animais , Modelos Animais de Doenças , Epêndima/fisiopatologia , Imuno-Histoquímica , Ventrículos Laterais/fisiopatologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Acidente Vascular Cerebral/líquido cefalorraquidiano , Acidente Vascular Cerebral/fisiopatologia
6.
Adv Mater ; : e2310619, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718249

RESUMO

The orthogonal structure of the widely used hole transporting material (HTM) 2,2',7,7'-tetrakis(N, N-di-p-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD) imparts isotropic conductivity and excellent film-forming capability. However, inherently weak intra- and inter-molecular π-π interactions result in low intrinsic hole mobility. Herein, a novel HTM, termed FTPE-ST, with a twist conjugated dibenzo(g,p)chrysene core and coplanar 3,4-ethylenedioxythiophene (EDOT) as extended donor units, is designed to enhance π-π interactions, without compromising on solubility. The three-dimensional (3D) configuration provides the material multi-direction charge transport as well as excellent solubility even in 2-methylanisole, and its large conjugated backbone endows the HTM with a high hole mobility. Moreover, the sulfur donors in EDOT units coordinate with lead ions on the perovskite surface, leading to stronger interfacial interactions and the suppression of defects at the perovskite/HTM interface. As a result, perovskite solar cells (PSCs) employing FTPE-ST achieve a champion power conversion efficiency (PCE) of 25.21% with excellent long-time stability, one of the highest PCEs for non-spiro HTMs in n-i-p PSCs. In addition, the excellent film-forming capacity of the HTM enables the fabrication of FTPE-ST-based large-scale PSCs (1.0 cm2) and modules (29.0 cm2), which achieve PCEs of 24.21% (certificated 24.17%) and 21.27%, respectively.

7.
Nanomicro Lett ; 15(1): 138, 2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37245182

RESUMO

Perovskite crystal facets greatly impact the performance and stability of their corresponding photovoltaic devices. Compared to the (001) facet, the (011) facet yields better photoelectric properties, including higher conductivity and enhanced charge carrier mobility. Thus, achieving (011) facet-exposed films is a promising way to improve device performance. However, the growth of (011) facets is energetically unfavorable in FAPbI3 perovskites due to the influence of methylammonium chloride additive. Here, 1-butyl-4-methylpyridinium chloride ([4MBP]Cl) was used to expose (011) facets. The [4MBP]+ cation selectively decreases the surface energy of the (011) facet enabling the growth of the (011) plane. The [4MBP]+ cation causes the perovskite nuclei to rotate by 45° such that (011) crystal facets stack along the out-of-plane direction. The (011) facet has excellent charge transport properties and can achieve better-matched energy level alignment. In addition, [4MBP]Cl increases the activation energy barrier for ion migration, suppressing decomposition of the perovskite. As a result, a small-size device (0.06 cm2) and a module (29.0 cm2) based on exposure of the (011) facet achieved power conversion efficiencies of 25.24% and 21.12%, respectively.

8.
Sci Adv ; 9(21): eadg0087, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37235654

RESUMO

All-inorganic CsPbI3 perovskite solar cells (PSCs) with efficiencies exceeding 20% are ideal candidates for application in large-scale tandem solar cells. However, there are still two major obstacles hindering their scale-up: (i) the inhomogeneous solid-state synthesis process and (ii) the inferior stability of the photoactive CsPbI3 black phase. Here, we have used a thermally stable ionic liquid, bis(triphenylphosphine)iminium bis(trifluoromethylsulfonyl)imide ([PPN][TFSI]), to retard the high-temperature solid-state reaction between Cs4PbI6 and DMAPbI3 [dimethylammonium (DMA)], which enables the preparation of high-quality and large-area CsPbI3 films in the air. Because of the strong Pb-O contacts, [PPN][TFSI] increases the formation energy of superficial vacancies and prevents the undesired phase degradation of CsPbI3. The resulting PSCs attained a power conversion efficiency (PCE) of 20.64% (certified 19.69%) with long-term operational stability over 1000 hours. A record efficiency of 16.89% for an all-inorganic perovskite solar module was achieved, with an active area of 28.17 cm2.

9.
Adv Mater ; 35(25): e2300720, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36934398

RESUMO

Defective and perfect sites naturally exist within electronic semiconductors, and considerable efforts to reduce defects to improve the performance of electronic devices, especially in hybrid organic-inorganic perovskites (ABX3 ), are undertaken. Herein, foldable hole-transporting materials (HTMs) are developed, and they extend the wavefunctions of A-site cations of perovskite, which, as hybridized electronic states, link the trap states (defective site) and valence band edge (perfect site) between the naturally defective and perfect sites of the perovskite surface, finally converting the discrete trap states of the perovskite as the continuous valence band to reduce trap recombination. Tailoring the foldability of the HTMs tunes the wavefunctions between defective and perfect surface sites, allowing the power conversion efficiency of a small cell to reach 23.22% and that of a mini-module (6.5 × 7 cm, active area = 30.24 cm2 ) to reach as high as 21.71% with a fill factor of 81%, the highest value reported for non-spiro-OMeTAD-based perovskite solar modules.

10.
ACS Appl Mater Interfaces ; 14(17): 19459-19468, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35438961

RESUMO

Although the published values of power conversion efficiency (PCE) have increased continuously in recent years for perovskite solar cells (PSCs), improvements in the stability and performance of PSCs with conventional TiO2 or SnO2 electron transport layers (ETLs) remain limited by the presence of nonideal interface defects and low ultraviolet (UV) absorption. In this study, 2-hydroxy-4-methoxy-5-sulfonate-benzophenone (SBP), an inexpensive water-soluble sunscreen raw material, was incorporated into the SnO2 ETL as a UV filter. It was found that the exposure of perovskite to UV light was significantly reduced, and, more importantly, the carbonyl and sulfonic acid groups in the SBP influenced both the perovskite crystallization process and the passivation of defects in the ETL/perovskite film interface. As a result, the PCE of SBP-based devices was increased to 22.54% from 20.78% of the control sample, with a concomitant decrease in the hysteresis. Moreover, the efficiency of champion devices with SBP decreased by less than 5% after 200 h of continuous UV (1.63 mW/cm2, 285 nm) irradiation, while the control group dropped to below 75% of the initial value, thus showing significantly improved stability.

11.
Artigo em Inglês | MEDLINE | ID: mdl-35535996

RESUMO

The development of a scalable chemical bath deposition (CBD) process facilitates the realization of electron-transporting layers (ETLs) for large-area perovskite solar modules (PSMs). Herein, a method to prepare a uniform and scalable thick Zn2SnO4 ETL by CBD, which yielded high-performance PSMs, is reported. This Zn2SnO4 ETL exhibits excellent electrical properties and enhanced optical transmittance in the visible region. Moreover, the Zn2SnO4 ETL influences the perovskite layer formation, yielding enhanced crystallinity, increased grain size, and a smoother surface, thus facilitating electron extraction and collection from the perovskite to the ETL. Zn2SnO4 thereby yields PSMs with a remarkable photovoltaic performance, low hysteresis index, and high device reproducibility. The champion PSM exhibited a power conversion efficiency (PCE) of 22.59%, being among the highest values published so far. In addition, the CBD Zn2SnO4-based PSMs exhibit high stability, retaining more than 88% of initial efficiency over 1000 h under continuous illumination. This demonstrates that CBD Zn2SnO4 is an appropriate ETL for high-efficiency PSMs and a viable new process for their industrialization.

12.
Nat Nanotechnol ; 17(6): 598-605, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35449409

RESUMO

Despite the remarkable progress in power conversion efficiency of perovskite solar cells, going from individual small-size devices into large-area modules while preserving their commercial competitiveness compared with other thin-film solar cells remains a challenge. Major obstacles include reduction of both the resistive losses and intrinsic defects in the electron transport layers and the reliable fabrication of high-quality large-area perovskite films. Here we report a facile solvothermal method to synthesize single-crystalline TiO2 rhombohedral nanoparticles with exposed (001) facets. Owing to their low lattice mismatch and high affinity with the perovskite absorber, their high electron mobility and their lower density of defects, single-crystalline TiO2 nanoparticle-based small-size devices achieve an efficiency of 24.05% and a fill factor of 84.7%. The devices maintain about 90% of their initial performance after continuous operation for 1,400 h. We have fabricated large-area modules and obtained a certified efficiency of 22.72% with an active area of nearly 24 cm2, which represents the highest-efficiency modules with the lowest loss in efficiency when scaling up.

13.
ACS Appl Mater Interfaces ; 13(44): 52450-52460, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34704729

RESUMO

Hybrid lead halide perovskites have reached comparable efficiencies to state-of-the-art silicon solar cell technologies. However, a remaining key challenge toward commercialization is the resolution of the perovskite device instability. In this work, we identify for the first time the mobile nature of bis(trifluoromethanesulfonyl)imide (TFSI-), a typical anion extensively employed in p-type dopants for 2,2'7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'spirofluorene (spiro-OMeTAD). We demonstrate that TFSI- can migrate through the perovskite layer via the grain boundaries and accumulate at the perovskite/electron-transporting layer (ETL) interface. Our findings reveal that the migration of TFSI- enhances the device performance and stability, resulting in highly stable p-i-n cells that retain 90% of their initial performance after 1600 h of continuous testing. Our systematic study, which targeted the effect of the nature of the dopant and its concentration, also shows that TFSI- acts as a dynamic defect-healing agent, which self-passivates the perovskite crystal defects during the migration process and thereby decreases nonradiative recombination pathways.

14.
Nat Commun ; 12(1): 6394, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737288

RESUMO

Organic halide salt passivation is considered to be an essential strategy to reduce defects in state-of-the-art perovskite solar cells (PSCs). This strategy, however, suffers from the inevitable formation of in-plane favored two-dimensional (2D) perovskite layers with impaired charge transport, especially under thermal conditions, impeding photovoltaic performance and device scale-up. To overcome this limitation, we studied the energy barrier of 2D perovskite formation from ortho-, meta- and para-isomers of (phenylene)di(ethylammonium) iodide (PDEAI2) that were designed for tailored defect passivation. Treatment with the most sterically hindered ortho-isomer not only prevents the formation of surficial 2D perovskite film, even at elevated temperatures, but also maximizes the passivation effect on both shallow- and deep-level defects. The ensuing PSCs achieve an efficiency of 23.9% with long-term operational stability (over 1000 h). Importantly, a record efficiency of 21.4% for the perovskite module with an active area of 26 cm2 was achieved.

15.
Regul Toxicol Pharmacol ; 54(2): 154-63, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19328831

RESUMO

Expression of the Cry34Ab1 and Cry35Ab1 proteins from Bacillus thuringiensis (Bt) Berliner strain PS149B1 in genetically modified maize (event DAS-59122-7) protects the crop from damage due to feeding by Diabrotica larvae including the western corn rootworm (Diabrotica virgifera virgifera). As part of the safety assessment of this maize, mammalian toxicology studies were conducted with heterologously produced Cry34Ab1 and Cry35Ab1 proteins. No evidence of acute toxicity was observed in mice following oral exposure to either the Cry34Ab1 or Cry35Ab1 proteins individually (2700 and 1850 mg/kg, respectively) or concomitantly (482 and 1520 mg/kg, respectively; 1:1 molar ratio). Similarly, no adverse effects were observed in mice in a repeated dose (28 day) dietary toxicity study that incorporated these proteins into diets at concentrations corresponding up to 1000-fold greater than the highest estimate of human exposure based on the concentrations of these proteins expressed in 59122 maize grain. These studies demonstrate that the Cry34Ab1 and Cry35Ab1 proteins do not represent a risk to human health and support previous studies indicating that 59122 maize grain is as safe and wholesome as non-GM maize grain.


Assuntos
Proteínas de Bactérias/toxicidade , Besouros , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Controle Biológico de Vetores , Plantas Geneticamente Modificadas , Zea mays/genética , Administração Oral , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Endotoxinas/genética , Endotoxinas/isolamento & purificação , Feminino , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/isolamento & purificação , Larva , Masculino , Camundongos , Camundongos Endogâmicos , Estabilidade Proteica , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica , Zea mays/crescimento & desenvolvimento , Zea mays/toxicidade
16.
Neurochem Res ; 33(9): 1711-6, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18335311

RESUMO

The effect of aglycaemic hypoxia (AH) on the activity of the mitochondrial respiratory chain complexes was measured in superfused adult cortical brain slices. After 15 min of AH the activity of complex II-III was significantly reduced (by 45%) with no change in complex I or IV. Following 30 min of reperfusion the activities of complex II-III and IV were significantly reduced (by 45% and 20% respectively). These reductions in enzyme activity were abolished by removing the external calcium or by the addition of N omega-nitro-L-arginine (LNNA) or an analogue of superoxide dismutase (SOD) manganese [III] tetrakis 4-benzoic acid porphyrin (Mn-TBAP). These data suggest that a reactive oxygen species (ROS) such as peroxynitrite is involved in the reduction of mitochondrial complex activities following AH.


Assuntos
Isquemia Encefálica/patologia , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Animais , Isquemia Encefálica/metabolismo , Citrato (si)-Sintase/metabolismo , Transporte de Elétrons/fisiologia , Feminino , Masculino , Mitocôndrias/metabolismo , Ratos
17.
IEEE Trans Med Imaging ; 25(12): 1617-26, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17167996

RESUMO

Recent innovations in drug therapies have made it highly desirable to obtain sensitive biomarkers of disease progression that can be used to quantify the performance of candidate disease modifying drugs. In order to measure potential image-based biomarkers of disease progression in an experimental model of rheumatoid arthritis (RA), we present two different methods to automatically quantify changes in a bone in in-vivo serial magnetic resonance (MR) images from the model. Both methods are based on rigid and nonrigid image registration to perform the analysis. The first method uses segmentation propagation to delineate a bone from the serial MR images giving a global measure of temporal changes in bone volume. The second method uses rigid body registration to determine intensity change within a bone, and then maps these into a reference coordinate system using nonrigid registration. This gives a local measure of temporal changes in bone lesion volume. We detected significant temporal changes in local bone lesion volume in five out of eight identified candidate bone lesion regions, and significant difference in local bone lesion volume between male and female subjects in three out of eight candidate bone lesion regions. But the global bone volume was found to be fluctuating over time. Finally, we compare our findings with histology of the subjects and the manual segmentation of bone lesions.


Assuntos
Articulação do Tornozelo/patologia , Artrite Reumatoide/patologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Técnica de Subtração , Algoritmos , Animais , Inteligência Artificial , Progressão da Doença , Feminino , Armazenamento e Recuperação da Informação/métodos , Masculino , Ratos , Ratos Endogâmicos Lew , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Toxicol Sci ; 154(1): 90-100, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27492223

RESUMO

Dietary administration is a relevant route of oral exposure for regulatory toxicity studies of agrochemicals as it mimics potential human intake of the chemical via treated crops and commodities. Moreover, dietary administration of test compounds during a developmental toxicity study can deliver a prolonged and stable systemic exposure to the embryo or fetus at all stages of development. In this study, strategies were employed to optimize rabbit test material consumption via diet. Comparative toxicokinetic profiles of gavage versus dietary administration were evaluated in pregnant or non-pregnant New Zealand White rabbits for 2 novel agrochemicals with different plasma half-lives of elimination (sulfoxaflor, t½ = 13.5 h and halauxifen, t½ = 1 h). Dietary administration of sulfoxaflor resulted in stable 24-h plasma concentrations, whereas gavage administration resulted in a 3-fold fluctuation in plasma levels between Cmax and Cmin Dietary administration of sulfoxaflor resulted in a 2-fold higher nominal and diurnal systemic dose when compared with gavage dosing due to Cmax-related maternal toxicity following gavage. Results with the shorter half-life molecule, halauxifen, were more striking with a 6-fold diurnal fluctuation by the dietary route compared with a 368-fold fluctuation between Cmax and Cmin by gavage. Furthermore, plasma halauxifen was detectable only up to 12 h following gavage but up to 24 h following dietary administration. Finally, the presence of these compounds in fetal blood samples was demonstrated, confirming that dietary exposure is appropriate for achieving fetal exposure. Collectively, the results of these studies support the use of dietary exposure in rabbit developmental toxicity studies.


Assuntos
Administração Oral , Agroquímicos/toxicidade , Testes de Toxicidade/métodos , Animais , Dieta , Feminino , Feto , Meia-Vida , Gravidez , Piridinas/sangue , Piridinas/toxicidade , Coelhos , Compostos de Enxofre/sangue , Compostos de Enxofre/toxicidade , Toxicocinética
19.
Steroids ; 70(4): 267-72, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15784282

RESUMO

Thymus involution is a useful marker of transactivation-mediated side effects in preclinical therapeutic index testing of new anti-inflammatory glucocorticosteroids, and is usually measured post mortem. We have validated the use of MRI for non-invasive in vivo measurement of mouse thymus involution induced by dexamethasone (DEX). Tl-weighted spin echo 7 T images provided satisfactory contrast between thymus and surrounding connective tissue and fat. Increasing doses of DEX caused thymus involution, reflected in MRI volume (87+/-14, 33+/-10, 28+/-6, 16+/-7 microl in dosage groups of Cremophor vehicle, 1, 10 and 30 mg/kg subcutaneous respectively, n=6/group, mean+/-standard deviation) and post mortem wet weight (64+/-12, 33+/-6, 25+/-9, 23+/-8 mg). Correlation between MRI volumes and wet weights was very good (r=0.842). Measuring pre-dose MRI volumes and then assessing DEX effects as post-dose change from baseline produced no statistical advantage relative to considering post-dose MRI thymus volume alone, probably due to variability in pre-dose baseline values compounding post-dose variability. Smaller group sizes were sufficient to achieve a given statistical power using MRI post-dose volume than using wet weight, suggesting a role for MRI in differentiating the effects of compounds which produce similar effects, or in contexts where the use of large groups of animals is impractical or ethically unacceptable.


Assuntos
Dexametasona/farmacologia , Glucocorticoides/farmacologia , Imageamento por Ressonância Magnética , Timo/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Tamanho do Órgão/efeitos dos fármacos , Estatística como Assunto
20.
PLoS One ; 9(10): e110609, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25330118

RESUMO

IgE antigen complexes induce increased specific T cell proliferation and increased specific IgG production. Immediately after immunization, CD23(+) B cells capture IgE antigen complexes, transport them to the spleen where, via unknown mechanisms, dendritic cells capture the antigen and present it to T cells. CD23, the low affinity IgE receptor, binds IgE antigen complexes and internalizes them. In this study, we show that these complexes are processed onto B-cell derived exosomes (bexosomes) in a CD23 dependent manner. The bexosomes carry CD23, IgE and MHC II and stimulate antigen specific T-cell proliferation in vitro. When IgE antigen complex stimulated bexosomes are incubated with dendritic cells, dendritic cells induce specific T-cell proliferation in vivo, similar to IgE antigen complexes. This suggests that bexosomes can provide the essential transfer mechanism for IgE antigen complexes from B cells to dendritic cells.


Assuntos
Apresentação de Antígeno/fisiologia , Complexo Antígeno-Anticorpo/imunologia , Células Dendríticas/imunologia , Exossomos/imunologia , Imunoglobulina E/imunologia , Animais , Complexo Antígeno-Anticorpo/genética , Linfócitos B/citologia , Linfócitos B/imunologia , Transporte Biológico Ativo/genética , Transporte Biológico Ativo/imunologia , Células Dendríticas/citologia , Exossomos/genética , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Imunoglobulina E/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptores de IgE/genética , Receptores de IgE/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA