Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 14(3): e1005995, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29518076

RESUMO

Passive acoustic sensing has emerged as a powerful tool for quantifying anthropogenic impacts on biodiversity, especially for echolocating bat species. To better assess bat population trends there is a critical need for accurate, reliable, and open source tools that allow the detection and classification of bat calls in large collections of audio recordings. The majority of existing tools are commercial or have focused on the species classification task, neglecting the important problem of first localizing echolocation calls in audio which is particularly problematic in noisy recordings. We developed a convolutional neural network based open-source pipeline for detecting ultrasonic, full-spectrum, search-phase calls produced by echolocating bats. Our deep learning algorithms were trained on full-spectrum ultrasonic audio collected along road-transects across Europe and labelled by citizen scientists from www.batdetective.org. When compared to other existing algorithms and commercial systems, we show significantly higher detection performance of search-phase echolocation calls with our test sets. As an example application, we ran our detection pipeline on bat monitoring data collected over five years from Jersey (UK), and compared results to a widely-used commercial system. Our detection pipeline can be used for the automatic detection and monitoring of bat populations, and further facilitates their use as indicator species on a large scale. Our proposed pipeline makes only a small number of bat specific design decisions, and with appropriate training data it could be applied to detecting other species in audio. A crucial novelty of our work is showing that with careful, non-trivial, design and implementation considerations, state-of-the-art deep learning methods can be used for accurate and efficient monitoring in audio.


Assuntos
Quirópteros/fisiologia , Ecolocação/fisiologia , Monitoramento Ambiental/métodos , Aprendizado de Máquina , Processamento de Sinais Assistido por Computador , Algoritmos , Animais , Quirópteros/classificação , Biologia Computacional , Ecolocação/classificação , Espécies em Perigo de Extinção , Redes Neurais de Computação , Zoologia
2.
PLoS One ; 10(5): e0127659, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25992957

RESUMO

We report the development and testing of software called QuantiFly: an automated tool to quantify Drosophila egg laying. Many laboratories count Drosophila eggs as a marker of fitness. The existing method requires laboratory researchers to count eggs manually while looking down a microscope. This technique is both time-consuming and tedious, especially when experiments require daily counts of hundreds of vials. The basis of the QuantiFly software is an algorithm which applies and improves upon an existing advanced pattern recognition and machine-learning routine. The accuracy of the baseline algorithm is additionally increased in this study through correction of bias observed in the algorithm output. The QuantiFly software, which includes the refined algorithm, has been designed to be immediately accessible to scientists through an intuitive and responsive user-friendly graphical interface. The software is also open-source, self-contained, has no dependencies and is easily installed (https://github.com/dwaithe/quantifly). Compared to manual egg counts made from digital images, QuantiFly achieved average accuracies of 94% and 85% for eggs laid on transparent (defined) and opaque (yeast-based) fly media. Thus, the software is capable of detecting experimental differences in most experimental situations. Significantly, the advanced feature recognition capabilities of the software proved to be robust to food surface artefacts like bubbles and crevices. The user experience involves image acquisition, algorithm training by labelling a subset of eggs in images of some of the vials, followed by a batch analysis mode in which new images are automatically assessed for egg numbers. Initial training typically requires approximately 10 minutes, while subsequent image evaluation by the software is performed in just a few seconds. Given the average time per vial for manual counting is approximately 40 seconds, our software introduces a timesaving advantage for experiments starting with as few as 20 vials. We also describe an optional acrylic box to be used as a digital camera mount and to provide controlled lighting during image acquisition which will guarantee the conditions used in this study.


Assuntos
Drosophila/fisiologia , Oviposição , Software , Algoritmos , Animais , Processamento de Imagem Assistida por Computador/métodos , Dados de Sequência Molecular , Fatores de Tempo
3.
IEEE Trans Pattern Anal Mach Intell ; 35(5): 1107-20, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22868652

RESUMO

We present a supervised learning-based method to estimate a per-pixel confidence for optical flow vectors. Regions of low texture and pixels close to occlusion boundaries are known to be difficult for optical flow algorithms. Using a spatiotemporal feature vector, we estimate if a flow algorithm is likely to fail in a given region. Our method is not restricted to any specific class of flow algorithm and does not make any scene specific assumptions. By automatically learning this confidence, we can combine the output of several computed flow fields from different algorithms to select the best performing algorithm per pixel. Our optical flow confidence measure allows one to achieve better overall results by discarding the most troublesome pixels. We illustrate the effectiveness of our method on four different optical flow algorithms over a variety of real and synthetic sequences. For algorithm selection, we achieve the top overall results on a large test set, and at times even surpass the results of the best algorithm among the candidates.

4.
IEEE Trans Pattern Anal Mach Intell ; 33(10): 2104-14, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21339525

RESUMO

We present an algorithm and the associated single-view capture methodology to acquire the detailed 3D shape, bends, and wrinkles of deforming surfaces. Moving 3D data has been difficult to obtain by methods that rely on known surface features, structured light, or silhouettes. Multispectral photometric stereo is an attractive alternative because it can recover a dense normal field from an untextured surface. We show how to capture such data, which in turn allows us to demonstrate the strengths and limitations of our simple frame-to-frame registration over time. Experiments were performed on monocular video sequences of untextured cloth and faces with and without white makeup. Subjects were filmed under spatially separated red, green, and blue lights. Our first finding is that the color photometric stereo setup is able to produce smoothly varying per-frame reconstructions with high detail. Second, when these 3D reconstructions are augmented with 2D tracking results, one can register both the surfaces and relax the homogenous-color restriction of the single-hue subject. Quantitative and qualitative experiments explore both the practicality and limitations of this simple multispectral capture system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA