Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 29(9): 1074-1078, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30857747

RESUMO

A seven-membered cyclic chiral analog of potent lead BTK inhibitor 1 was envisioned by structure-based design to lock the molecule into its bioactive conformation. For the elaboration of the seven-membered ring, compound 1 pyridone 6-position was substituted with the purpose to prevent formation of reactive metabolites. Eventually, the cyclic chiral compound 3 maintained the high potency of 1, and most importantly showed no activity at either GSH or TDI assays suggesting no formation of reactive metabolites. The anticipated bound conformation of 3 to BTK was confirmed by X-ray crystallography. Synthetically, the crucial seven-membered ring formation was obtained by using TosMIC as a connective reagent.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Desenho de Fármacos , Inibidores de Proteínas Quinases/química , Tirosina Quinase da Agamaglobulinemia/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Estereoisomerismo , Relação Estrutura-Atividade
3.
Cancer Lett ; 534: 215613, 2022 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-35276290

RESUMO

Signal transducer and activator of transcription (Stat)3 is a valid anticancer therapeutic target. We have discovered a highly potent chemotype that amplifies the Stat3-inhibitory activity of lead compounds to levels previously unseen. The azetidine-based compounds, including H172 (9f) and H182, irreversibly bind to Stat3 and selectively inhibit Stat3 activity (IC50 0.38-0.98 µM) over Stat1 or Stat5 (IC50 > 15.8 µM) in vitro. Mass spectrometry detected the Stat3 cysteine peptides covalently bound to the azetidine compounds, and the key residues, Cys426 and Cys468, essential for the high potency inhibition, were confirmed by site-directed mutagenesis. In triple-negative breast cancer (TNBC) models, treatment with the azetidine compounds inhibited constitutive and ligand-induced Stat3 signaling, and induced loss of viable cells and tumor cell death, compared to no effect on the induction of Janus kinase (JAK)2, Src, epidermal growth factor receptor (EGFR), and other proteins, or weak effects on cells that do not harbor aberrantly-active Stat3. H120 (8e) and H182 as a single agent inhibited growth of TNBC xenografts, and H278 (hydrochloric acid salt of H182) in combination with radiation completely blocked mouse TNBC growth and improved survival in syngeneic models. We identify potent azetidine-based, selective, irreversible Stat3 inhibitors that inhibit TNBC growth in vivo.


Assuntos
Azetidinas , Neoplasias de Mama Triplo Negativas , Animais , Apoptose , Azetidinas/farmacologia , Linhagem Celular Tumoral , Humanos , Camundongos , Fosforilação , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética
4.
J Med Chem ; 64(1): 695-710, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33352047

RESUMO

We optimized our previously reported proline-based STAT3 inhibitors into an exciting new series of (R)-azetidine-2-carboxamide analogues that have sub-micromolar potencies. 5a, 5o, and 8i have STAT3-inhibitory potencies (IC50) of 0.55, 0.38, and 0.34 µM, respectively, compared to potencies greater than 18 µM against STAT1 or STAT5 activity. Further modifications derived analogues, including 7e, 7f, 7g, and 9k, that addressed cell membrane permeability and other physicochemical issues. Isothermal titration calorimetry analysis confirmed high-affinity binding to STAT3, with KD of 880 nM (7g) and 960 nM (9k). 7g and 9k inhibited constitutive STAT3 phosphorylation and DNA-binding activity in human breast cancer, MDA-MB-231 or MDA-MB-468 cells. Furthermore, treatment of breast cancer cells with 7e, 7f, 7g, or 9k inhibited viable cells, with an EC50 of 0.9-1.9 µM, cell growth, and colony survival, and induced apoptosis while having relatively weaker effects on normal breast epithelial, MCF-10A or breast cancer, MCF-7 cells that do not harbor constitutively active STAT3.


Assuntos
Azetidinas/química , Fator de Transcrição STAT3/antagonistas & inibidores , Amidas/química , Apoptose/efeitos dos fármacos , Azetidinas/metabolismo , Azetidinas/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA/química , DNA/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50 , Fosforilação/efeitos dos fármacos , Ligação Proteica , Fator de Transcrição STAT3/metabolismo , Relação Estrutura-Atividade
5.
Bioorg Med Chem Lett ; 20(14): 4215-8, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20538456

RESUMO

An analysis of the binding motifs of known HIV-1 non-nucleoside reverse transcriptase inhibitors has led to discovery of novel piperidine-linked aminopyrimidine derivatives with broad activity against wild-type as well as drug-resistant mutant viruses. Notably, the series retains potency against the K103N/Y181C and Y188L mutants, among others. Thus, the N-benzyl compound 5k has a particularly attractive profile. Synthesis and SAR are presented and discussed, as well as crystal structures relating to the binding motifs.


Assuntos
Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Mutação , Pirimidinas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Descoberta de Drogas , Farmacorresistência Viral/genética , HIV-1/genética , Modelos Moleculares , Pirimidinas/química , Relação Estrutura-Atividade
6.
Bioorg Med Chem Lett ; 20(3): 1031-6, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20045645

RESUMO

Despite the extensive literature describing the role of the ATP-gated P2X(3) receptors in a variety of physiological processes the potential of antagonists as therapeutic agents has been limited by the lack of drug-like selective molecules. In this paper we report the discovery and optimization of RO-85, a novel drug-like, potent and selective P2X(3) antagonist. High-throughput screening of the Roche compound collection identified a small hit series of heterocyclic amides from a large parallel synthesis library. Rapid optimization, facilitated by high-throughput synthesis, focusing on increasing potency and improving drug-likeness resulted in the discovery of RO-85.


Assuntos
Descoberta de Drogas/métodos , Antagonistas do Receptor Purinérgico P2 , Pirazóis/química , Pirazóis/metabolismo , Pirazóis/farmacologia , Tiofenos/química , Tiofenos/metabolismo , Tiofenos/farmacologia , Animais , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Ligação Proteica/fisiologia , Ratos , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2X3 , Relação Estrutura-Atividade
7.
Bioorg Med Chem Lett ; 19(18): 5401-6, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19674898

RESUMO

A novel series of CCR5 antagonists has been identified, utilizing leads from high-throughput screening which were further modified based on insights from competitor molecules. Lead optimization was pursued by balancing opposing trends of metabolic stability and potency. Selective and potent analogs with good pharmacokinetic properties were successfully developed.


Assuntos
Antagonistas dos Receptores CCR5 , Piperidinas/química , Piperidinas/farmacologia , Receptores CCR5/metabolismo , Animais , Células CACO-2 , Cães , Haplorrinos , Humanos , Piperidinas/farmacocinética , Ratos , Compostos de Espiro/química , Compostos de Espiro/farmacocinética , Compostos de Espiro/farmacologia , Relação Estrutura-Atividade
8.
ACS Med Chem Lett ; 9(3): 250-255, 2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29541369

RESUMO

The molecular determinants for the activities of the reported benzoic acid (SH4-54), salicylic acid (BP-1-102), and benzohydroxamic acid (SH5-07)-based STAT3 inhibitors were investigated to design optimized analogues. All three leads are based on an N-methylglycinamide scaffold, with its two amine groups condensed with three different functionalities. The three functionalities and the CH2 group of the glycinamide scaffold were separately modified. The replacement of the pentafluorobenzene or cyclohexylbenzene, or replacing the benzene ring of the aromatic carboxylic or hydroxamic acid motif with heterocyclic components (containing nitrogen and oxygen elements) all decreased potency. Notably, the Ala-linker analogues, 1a and 2v, and the Pro-based derivative 5d, all with (R)-configuration at the chiral center, had improved inhibitory activity and selectivity against STAT3 DNA-binding activity in vitro, with IC50 of 3.0 ± 0.9, 1.80 ± 0.94, and 2.4 ± 0.2 µM, respectively. Compounds 1a, 2v, 5d, and other analogues inhibited constitutive STAT3 phosphorylation and activation in human breast cancer and melanoma lines, and blocked tumor cell viability, growth, colony formation, and migration in vitro. Pro-based analogue, 5h, with a relatively polar tetrahydropyranyl (THP) ring, instead of the cyclohexyl, showed improved permeability. In general, the (R)-configuration Pro-based analogs showed the overall best profile, including physicochemical properties (e.g., microsomal metabolic stability, Caco-2 permeability), and in particular, 5d showed improved tumor-cell specificity.

9.
J Med Chem ; 61(8): 3641-3659, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29590749

RESUMO

Transient receptor potential ankyrin 1 (TRPA1) is a non-selective cation channel expressed in sensory neurons where it functions as an irritant sensor for a plethora of electrophilic compounds and is implicated in pain, itch, and respiratory disease. To study its function in various disease contexts, we sought to identify novel, potent, and selective small-molecule TRPA1 antagonists. Herein we describe the evolution of an N-isopropylglycine sulfonamide lead (1) to a novel and potent (4 R,5 S)-4-fluoro-5-methylproline sulfonamide series of inhibitors. Molecular modeling was utilized to derive low-energy three-dimensional conformations to guide ligand design. This effort led to compound 20, which possessed a balanced combination of potency and metabolic stability but poor solubility that ultimately limited in vivo exposure. To improve solubility and in vivo exposure, we developed methylene phosphate prodrug 22, which demonstrated superior oral exposure and robust in vivo target engagement in a rat model of AITC-induced pain.


Assuntos
Pró-Fármacos/farmacologia , Prolina/análogos & derivados , Prolina/farmacologia , Sulfonamidas/farmacologia , Canal de Cátion TRPA1/antagonistas & inibidores , Animais , Cães , Descoberta de Drogas , Estabilidade de Medicamentos , Humanos , Ligantes , Células Madin Darby de Rim Canino , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Conformação Molecular , Pró-Fármacos/síntese química , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Prolina/síntese química , Prolina/farmacocinética , Ratos , Solubilidade , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Sulfonamidas/farmacocinética , Canal de Cátion TRPA1/química
10.
J Med Chem ; 58(21): 8413-26, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26460788

RESUMO

Identification of singleton P2X7 inhibitor 1 from HTS gave a pharmacophore that eventually turned into potential clinical candidates 17 and 19. During development, a number of issues were successfully addressed, such as metabolic stability, plasma stability, GSH adduct formation, and aniline mutagenicity. Thus, careful modification of the molecule, such as conversion of the 1,4-dihydropyridinone to the 1,2-dihydropyridinone system, proper substitution at C-5″, and in some cases addition of fluorine atoms to the aniline ring allowed for the identification of a novel class of potent P2X7 inhibitors suitable for evaluating the role of P2X7 in inflammatory, immune, neurologic, or musculoskeletal disorders.


Assuntos
Antagonistas do Receptor Purinérgico P2X/química , Antagonistas do Receptor Purinérgico P2X/farmacologia , Piridonas/química , Piridonas/farmacologia , Receptores Purinérgicos P2X7/metabolismo , Compostos de Anilina/química , Compostos de Anilina/farmacologia , Halogenação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA