Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 31(21): 3581-3596, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-35147158

RESUMO

Pathogenesis of the inherited neurodegenerative disorder Huntington's disease (HD) is progressive with a long presymptomatic phase in which subtle changes occur up to 15 years before the onset of symptoms. Thus, there is a need for early, functional biomarker to better understand disease progression and to evaluate treatment efficacy far from onset. Recent studies have shown that white matter may be affected early in mutant HTT gene carriers. A previous study performed on 12 months old Ki140CAG mice showed reduced glutamate level measured by Chemical Exchange Saturation Transfer of glutamate (gluCEST), especially in the corpus callosum. In this study, we scanned longitudinally Ki140CAG mice with structural MRI, diffusion tensor imaging, gluCEST and magnetization transfer imaging, in order to assess white matter integrity over the life of this mouse model characterized by slow progression of symptoms. Our results show early defects of diffusion properties in the anterior part of the corpus callosum at 5 months of age, preceding gluCEST defects in the same region at 8 and 12 months that spread to adjacent regions. At 12 months, frontal and piriform cortices showed reduced gluCEST, as well as the pallidum. MT imaging showed reduced signal in the septum at 12 months. Cortical and striatal atrophy then appear at 18 months. Vulnerability of the striatum and motor cortex, combined with alterations of anterior corpus callosum, seems to point out the potential role of white matter in the brain dysfunction that characterizes HD and the pertinence of gluCEST and DTI as biomarkers in HD.


Assuntos
Doença de Huntington , Substância Branca , Animais , Camundongos , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/genética , Doença de Huntington/patologia , Substância Branca/patologia , Imagem de Tensor de Difusão/métodos , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Modelos Animais de Doenças , Ácido Glutâmico
2.
Brain ; 146(1): 149-166, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35298632

RESUMO

Huntington's disease is a fatal neurodegenerative disease characterized by striatal neurodegeneration, aggregation of mutant Huntingtin and the presence of reactive astrocytes. Astrocytes are important partners for neurons and engage in a specific reactive response in Huntington's disease that involves morphological, molecular and functional changes. How reactive astrocytes contribute to Huntington's disease is still an open question, especially because their reactive state is poorly reproduced in experimental mouse models. Here, we show that the JAK2-STAT3 pathway, a central cascade controlling astrocyte reactive response, is activated in the putamen of Huntington's disease patients. Selective activation of this cascade in astrocytes through viral gene transfer reduces the number and size of mutant Huntingtin aggregates in neurons and improves neuronal defects in two complementary mouse models of Huntington's disease. It also reduces striatal atrophy and increases glutamate levels, two central clinical outcomes measured by non-invasive magnetic resonance imaging. Moreover, astrocyte-specific transcriptomic analysis shows that activation of the JAK2-STAT3 pathway in astrocytes coordinates a transcriptional program that increases their intrinsic proteolytic capacity, through the lysosomal and ubiquitin-proteasome degradation systems. This pathway also enhances their production and exosomal release of the co-chaperone DNAJB1, which contributes to mutant Huntingtin clearance in neurons. Together, our results show that the JAK2-STAT3 pathway controls a beneficial proteostasis response in reactive astrocytes in Huntington's disease, which involves bi-directional signalling with neurons to reduce mutant Huntingtin aggregation, eventually improving disease outcomes.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Animais , Camundongos , Doença de Huntington/genética , Astrócitos/metabolismo , Proteostase , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo
3.
Neurobiol Dis ; 181: 106116, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37054900

RESUMO

Tauopathy is a typical feature of Alzheimer's disease of major importance because it strongly correlates with the severity of cognitive deficits experienced by patients. During the pathology, it follows a characteristic spatiotemporal course which takes its origin in the transentorhinal cortex, and then gradually invades the entire forebrain. To study the mechanisms of tauopathy, and test new therapeutic strategies, it is necessary to set-up relevant and versatile in vivo models allowing to recapitulate tauopathy. With this in mind, we have developed a model of tauopathy by overexpression of the human wild-type Tau protein in retinal ganglion cells in mice (RGCs). This overexpression led to the presence of hyperphosphorylated forms of the protein in the transduced cells as well as to their progressive degeneration. The application of this model to mice deficient in TREM2 (Triggering Receptor Expressed on Myeloid cells-2, an important genetic risk factor for AD) as well as to 15-month-old mice showed that microglia actively participate in the degeneration of RGCs. Surprisingly, although we were able to detect the transgenic Tau protein up to the terminal arborization of RGCs at the level of the superior colliculi, spreading of the transgenic Tau protein to post-synaptic neurons was detected only in aged animals. This suggests that there may be neuron-intrinsic- or microenvironment mediators facilitating this spreading that appear with aging.


Assuntos
Doença de Alzheimer , Tauopatias , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Glicoproteínas de Membrana/metabolismo , Camundongos Transgênicos , Microglia/metabolismo , Receptores Imunológicos/metabolismo , Células Ganglionares da Retina/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/patologia , Vias Visuais/metabolismo
4.
J Neurosci ; 41(22): 4910-4936, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33888607

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disease mainly characterized by motor incoordination because of progressive cerebellar degeneration. SCA7 is caused by polyglutamine expansion in ATXN7, a subunit of the transcriptional coactivator SAGA, which harbors histone modification activities. Polyglutamine expansions in specific proteins are also responsible for SCA1-SCA3, SCA6, and SCA17; however, the converging and diverging pathomechanisms remain poorly understood. Using a new SCA7 knock-in mouse, SCA7140Q/5Q, we analyzed gene expression in the cerebellum and assigned gene deregulation to specific cell types using published datasets. Gene deregulation affects all cerebellar cell types, although at variable degree, and correlates with alterations of SAGA-dependent epigenetic marks. Purkinje cells (PCs) are by far the most affected neurons and show reduced expression of 83 cell-type identity genes, including these critical for their spontaneous firing activity and synaptic functions. PC gene downregulation precedes morphologic alterations, pacemaker dysfunction, and motor incoordination. Strikingly, most PC genes downregulated in SCA7 have also decreased expression in SCA1 and SCA2 mice, revealing converging pathomechanisms and a common disease signature involving cGMP-PKG and phosphatidylinositol signaling pathways and LTD. Our study thus points out molecular targets for therapeutic development, which may prove beneficial for several SCAs. Furthermore, we show that SCA7140Q/5Q males and females exhibit the major disease features observed in patients, including cerebellar damage, cerebral atrophy, peripheral nerves pathology, and photoreceptor dystrophy, which account for progressive impairment of behavior, motor, and visual functions. SCA7140Q/5Q mice represent an accurate model for the investigation of different aspects of SCA7 pathogenesis.SIGNIFICANCE STATEMENT Spinocerebellar ataxia 7 (SCA7) is one of the several forms of inherited SCAs characterized by cerebellar degeneration because of polyglutamine expansion in specific proteins. The ATXN7 involved in SCA7 is a subunit of SAGA transcriptional coactivator complex. To understand the pathomechanisms of SCA7, we determined the cell type-specific gene deregulation in SCA7 mouse cerebellum. We found that the Purkinje cells are the most affected cerebellar cell type and show downregulation of a large subset of neuronal identity genes, critical for their spontaneous firing and synaptic functions. Strikingly, the same Purkinje cell genes are downregulated in mouse models of two other SCAs. Thus, our work reveals a disease signature shared among several SCAs and uncovers potential molecular targets for their treatment.


Assuntos
Cerebelo/patologia , Células de Purkinje/patologia , Ataxias Espinocerebelares/patologia , Animais , Regulação para Baixo , Feminino , Técnicas de Introdução de Genes , Masculino , Camundongos , Transcriptoma
5.
Brain ; 144(4): 1167-1182, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33842937

RESUMO

Deposits of different abnormal forms of tau in neurons and astrocytes represent key anatomo-pathological features of tauopathies. Although tau protein is highly enriched in neurons and poorly expressed by astrocytes, the origin of astrocytic tau is still elusive. Here, we used innovative gene transfer tools to model tauopathies in adult mouse brains and to investigate the origin of astrocytic tau. We showed in our adeno-associated virus (AAV)-based models and in Thy-Tau22 transgenic mice that astrocytic tau pathology can emerge secondarily to neuronal pathology. By designing an in vivo reporter system, we further demonstrated bidirectional exchanges of tau species between neurons and astrocytes. We then determined the consequences of tau accumulation in astrocytes on their survival in models displaying various status of tau aggregation. Using stereological counting of astrocytes, we report that, as for neurons, soluble tau species are highly toxic to some subpopulations of astrocytes in the hippocampus, whereas the accumulation of tau aggregates does not affect their survival. Thus, astrocytes are not mere bystanders of neuronal pathology. Our results strongly suggest that tau pathology in astrocytes may significantly contribute to clinical symptoms.


Assuntos
Astrócitos/patologia , Hipocampo/patologia , Tauopatias/patologia , Proteínas tau/toxicidade , Animais , Humanos , Masculino , Camundongos , Neurônios/patologia , Agregados Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/toxicidade , Tauopatias/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
6.
Molecules ; 27(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35056822

RESUMO

Since the discovery of α-synuclein as the major component in Lewy bodies, research into this protein in the context of Parkinson's disease pathology has been exponential. Cannabinoids are being investigated as potential therapies for Parkinson's disease from numerous aspects, but still little is known about the links between the cannabinoid system and the pathogenic α-synuclein protein; understanding these links will be necessary if cannabinoid therapies are to reach the clinic in the future. Therefore, the aim of this study was to investigate the time-course of alterations in components of the endocannabinoid system after viral-mediated α-synuclein overexpression in the rat brain. Rats were given unilateral intranigral injections of AAV-GFP or AAV-α-synuclein and sacrificed 4, 8 and 12 weeks later for qRT-PCR and liquid chromatography-mass spectrometry analyses of the endocannabinoid system, in addition to histological visualization of α-synuclein expression along the nigrostriatal pathway. As anticipated, intranigral delivery of AAV-α-synuclein induced widespread overexpression of human α-synuclein in the nigrostriatal pathway, both at the mRNA level and the protein level. However, despite this profound α-synuclein overexpression, we detected no differences in CB1 or CB2 receptor expression in the nigrostriatal pathway; however, interestingly, there was a reduction in the expression of neuroinflammatory markers. Furthermore, there was a reduction in the levels of the endocannabinoid 2-AG and the related lipid immune mediator OEA at week 12 post-surgery, indicating that α-synuclein overexpression triggers dysregulation of the endocannabinoid system. Although this research does show that the endocannabinoid system is impacted by α-synuclein, further research is necessary to more comprehensively understand the link between the cannabinoid system and the α-synuclein aspect of Parkinson's disease pathology in order for cannabinoid-based therapies to be feasible for the treatment of this disease in the coming years.


Assuntos
Corpo Estriado/patologia , Dependovirus/genética , Endocanabinoides/metabolismo , Substância Negra/patologia , alfa-Sinucleína/metabolismo , Animais , Corpo Estriado/metabolismo , Feminino , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Substância Negra/metabolismo , Fatores de Tempo , alfa-Sinucleína/administração & dosagem , alfa-Sinucleína/genética
7.
Neurobiol Dis ; 155: 105398, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34019997

RESUMO

The role played by microglia has taken the center of the stage in the etiology of Alzheimer's disease (AD). Several genome-wide association studies carried out on large cohorts of patients have indeed revealed a large number of genetic susceptibility factors corresponding to genes involved in neuroinflammation and expressed specifically by microglia in the brain. Among these genes TREM2, a cell surface receptor expressed by microglia, arouses strong interest because its R47H variant confers a risk of developing AD comparable to the ε4 allele of the APOE gene. Since this discovery, a growing number of studies have therefore examined the role played by TREM2 in the evolution of amyloid plaques and neurofibrillary tangles, the two brain lesions characteristic of AD. Many studies report conflicting results, reflecting the complex nature of microglial activation in AD. Here, we investigated the impact of TREM2 deficiency in the THY-Tau22 transgenic line, a well-characterized model of tauopathy. Our study reports an increase in the severity of tauopathy lesions in mice deficient in TREM2 occurring at an advanced stage of the pathology. This exacerbation of pathology was associated with a reduction in microglial activation indicated by typical morphological features and altered expression of specific markers. However, it was not accompanied by any further changes in memory performance. Our longitudinal study confirms that a defect in microglial TREM2 signaling leads to an increase in neuronal tauopathy occurring only at late stages of the disease.


Assuntos
Modelos Animais de Doenças , Glicoproteínas de Membrana/deficiência , Microglia/metabolismo , Receptores Imunológicos/deficiência , Tauopatias/metabolismo , Antígenos Thy-1/genética , Proteínas tau/genética , Animais , Feminino , Humanos , Estudos Longitudinais , Masculino , Aprendizagem em Labirinto/fisiologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Receptores Imunológicos/genética , Tauopatias/genética , Tauopatias/patologia
8.
J Neuroinflammation ; 18(1): 116, 2021 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-33993882

RESUMO

BACKGROUND: Neuroinflammation is an underlying pathology of all neurological conditions, the understanding of which is still being comprehended. A specific molecular pathway that has been overlooked in neuroinflammation is glycosylation (i.e., post-translational addition of glycans to the protein structure). N-glycosylation is a specific type of glycosylation with a cardinal role in the central nervous system (CNS), which is highlighted by congenital glycosylation diseases that result in neuropathological symptoms such as epilepsy and mental retardation. Changes in N-glycosylation can ultimately affect glycoproteins' functions, which will have an impact on cell machinery. Therefore, characterisation of N-glycosylation alterations in a neuroinflammatory scenario can provide a potential target for future therapies. METHODS: With that aim, the unilateral intrastriatal injection of lipopolysaccharide (LPS) in the adult rat brain was used as a model of neuroinflammation. In vivo and post-mortem, quantitative and spatial characterisation of both neuroinflammation and N-glycome was performed at 1-week post-injection of LPS. These aspects were investigated through a multifaceted approach based on positron emission tomography (PET), quantitative histology, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), liquid chromatography and matrix-assisted laser desorption ionisation mass spectrometry imaging (MALDI-MSI). RESULTS: In the brain region showing LPS-induced neuroinflammation, a significant decrease in the abundance of sialylated and core fucosylated structures was seen (approximately 7.5% and 8.5%, respectively), whereas oligomannose N-glycans were significantly increased (13.5%). This was confirmed by MALDI-MSI, which provided a high-resolution spatial distribution of N-glycans, allowing precise comparison between normal and diseased brain hemispheres. CONCLUSIONS: Together, our data show for the first time the complete profiling of N-glycomic changes in a well-characterised animal model of neuroinflammation. These data represent a pioneering step to identify critical targets that may modulate neuroinflammation in neurodegenerative diseases.


Assuntos
Encéfalo , Glicosilação , Inflamação/metabolismo , Polissacarídeos/análise , Polissacarídeos/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Mapeamento Encefálico , Cromatografia Líquida/métodos , Modelos Animais de Doenças , Glicômica , Masculino , Tomografia por Emissão de Pósitrons , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
9.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201785

RESUMO

Alpha-synuclein (α-syn) and leucine-rich repeat kinase 2 (LRRK2) play crucial roles in Parkinson's disease (PD). They may functionally interact to induce the degeneration of dopaminergic (DA) neurons via mechanisms that are not yet fully understood. We previously showed that the C-terminal portion of LRRK2 (ΔLRRK2) with the G2019S mutation (ΔLRRK2G2019S) was sufficient to induce neurodegeneration of DA neurons in vivo, suggesting that mutated LRRK2 induces neurotoxicity through mechanisms that are (i) independent of the N-terminal domains and (ii) "cell-autonomous". Here, we explored whether ΔLRRK2G2019S could modify α-syn toxicity through these two mechanisms. We used a co-transduction approach in rats with AAV vectors encoding ΔLRRK2G2019S or its "dead" kinase form, ΔLRRK2DK, and human α-syn with the A53T mutation (AAV-α-synA53T). Behavioral and histological evaluations were performed at 6- and 15-weeks post-injection. Results showed that neither form of ΔLRRK2 alone induced the degeneration of neurons at these post-injection time points. By contrast, injection of AAV-α-synA53T alone resulted in motor signs and degeneration of DA neurons. Co-injection of AAV-α-synA53T with AAV-ΔLRRK2G2019S induced DA neuron degeneration that was significantly higher than that induced by AAV-α-synA53T alone or with AAV-ΔLRRK2DK. Thus, mutated α-syn neurotoxicity can be enhanced by the C-terminal domain of LRRK2G2019 alone, through cell-autonomous mechanisms.


Assuntos
Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Proteínas Mutantes/metabolismo , Mutação , alfa-Sinucleína/metabolismo , Animais , Neurônios Dopaminérgicos/metabolismo , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Proteínas Mutantes/genética , Domínios Proteicos , Ratos , alfa-Sinucleína/genética
10.
Neurobiol Dis ; 134: 104614, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31605779

RESUMO

The G2019S substitution in the kinase domain of LRRK2 (LRRK2G2019S) is the most prevalent mutation associated with Parkinson's disease (PD). Neurotoxic effects of LRRK2G2019S are thought to result from an increase in its kinase activity as compared to wild type LRRK2. However, it is unclear whether the kinase domain of LRRK2G2019S is sufficient to trigger degeneration or if the full length protein is required. To address this question, we generated constructs corresponding to the C-terminal domain of LRRK2 (ΔLRRK2). A kinase activity that was increased by G2019➔S substitution could be detected in ΔLRRK2. However biochemical experiments suggested it did not bind or phosphorylate the substrate RAB10, in contrast to full length LRRK2. The overexpression of ΔLRRK2G2019S in the rat striatum using lentiviral vectors (LVs) offered a straightforward and simple way to investigate its effects in neurons in vivo. Results from a RT-qPCR array analysis indicated that ΔLRRK2G2019S led to significant mRNA expression changes consistent with a kinase-dependent mechanism. We next asked whether ΔLRRK2 could be sufficient to trigger neurodegeneration in the substantia nigra pars compacta (SNc) in adult rats. Six months after infection of the substantia nigra pars compacta (SNc) with LV-ΔLRRK2WT or LV-ΔLRRK2G2019S, the number of DA neurons was unchanged. To examine whether higher levels of ΔLRRK2G2019S could trigger degeneration we cloned ΔLRRK2 in AAV2/9 construct. As expected, AAV2/9 injected in the SNc led to neuronal expression of ΔLRRK2WT and ΔLRRK2G2019S at much higher levels than those obtained with LVs. Six months after injection, unbiased stereology showed that AAV-ΔLRRK2G2019S produced a significant ~30% loss of neurons positive for tyrosine hydroxylase- and for the vesicular dopamine transporter whereas AAV-ΔLRRK2WT did not. These findings show that overexpression of the C-terminal part of LRRK2 containing the mutant kinase domain is sufficient to trigger degeneration of DA neurons, through cell-autonomous mechanisms, possibly independent of RAB10.


Assuntos
Neurônios Dopaminérgicos/patologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Degeneração Neural/genética , Doença de Parkinson , Domínios Proteicos/genética , Animais , Técnicas de Transferência de Genes , Vetores Genéticos , Células HEK293 , Humanos , Lentivirus , Masculino , Mutação , Degeneração Neural/patologia , Parte Compacta da Substância Negra , Ratos , Ratos Sprague-Dawley
11.
NMR Biomed ; 33(7): e4301, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32198958

RESUMO

Identification of relevant biomarkers is fundamental to understand biological processes of neurodegenerative diseases and to evaluate therapeutic efficacy. Atrophy of brain structures has been proposed as a biomarker, but it provides little information about biochemical events related to the disease. Here, we propose to identify early and relevant biomarkers by combining biological specificity provided by 1 H-MRS and high spatial resolution offered by gluCEST imaging. For this, two different genetic mouse models of Huntington's disease (HD)-the Ki140CAG model, characterized by a slow progression of the disease, and the R6/1 model, which mimics the juvenile form of HD-were used. Animals were scanned at 11.7 T using a protocol combining 1 H-MRS and gluCEST imaging. We measured a significant decrease in levels of N-acetyl-aspartate, a metabolite mainly located in the neuronal compartment, in HD animals, and the decrease seemed to be correlated with disease severity. In addition, variations of tNAA levels were correlated with striatal volumes in both models. Significant variations of glutamate levels were also observed in Ki140CAG but not in R6/1 mice. Thanks to its high resolution, gluCEST provided complementary insights, and we highlighted alterations in small brain regions such as the corpus callosum in Ki140CAG mice, whereas the glutamate level was unchanged in the whole brain of R6/1 mice. In this study, we showed that 1 H-MRS can provide key information about biological processes occurring in vivo but was limited by the spatial resolution. On the other hand, gluCEST may finely point to alterations in unexpected brain regions, but it can also be blind to disease processes when glutamate levels are preserved. This highlights in a practical context the complementarity of the two methods to study animal models of neurodegenerative diseases and to identify relevant biomarkers.


Assuntos
Ácido Glutâmico/metabolismo , Doença de Huntington/diagnóstico por imagem , Espectroscopia de Prótons por Ressonância Magnética , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Atrofia , Modelos Animais de Doenças , Humanos , Camundongos Transgênicos , Neostriado/diagnóstico por imagem , Neostriado/patologia
12.
Neuroimage ; 191: 457-469, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30818026

RESUMO

Reactive astrocytes exhibit hypertrophic morphology and altered metabolism. Deciphering astrocytic status would be of great importance to understand their role and dysregulation in pathologies, but most analytical methods remain highly invasive or destructive. The diffusion of brain metabolites, as non-invasively measured using diffusion-weighted magnetic resonance spectroscopy (DW-MRS) in vivo, depends on the structure of their micro-environment. Here we perform advanced DW-MRS in a mouse model of reactive astrocytes to determine how cellular compartments confining metabolite diffusion are changing. This reveals myo-inositol as a specific intra-astrocytic marker whose diffusion closely reflects astrocytic morphology, enabling non-invasive detection of astrocyte hypertrophy (subsequently confirmed by confocal microscopy ex vivo). Furthermore, we measure massive variations of lactate diffusion properties, suggesting that intracellular lactate is predominantly astrocytic under control conditions, but predominantly neuronal in case of astrocyte reactivity. This indicates massive remodeling of lactate metabolism, as lactate compartmentation is tightly linked to the astrocyte-to-neuron lactate shuttle mechanism.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Inositol/análise , Espectroscopia de Ressonância Magnética/métodos , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Imagem de Difusão por Ressonância Magnética , Inositol/metabolismo , Ácido Láctico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
13.
Eur J Neurosci ; 49(3): 339-363, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30269383

RESUMO

Our understanding of the mechanisms underlying Parkinson's disease, the once archetypical nongenetic neurogenerative disorder, has dramatically increased with the identification of α-synuclein and LRRK2 pathogenic mutations. While α-synuclein protein composes the aggregates that can spread through much of the brain in disease, LRRK2 encodes a multidomain dual-enzyme distinct from any other protein linked to neurodegeneration. In this review, we discuss emergent datasets from multiple model systems that suggest these unlikely partners do interact in important ways in disease, both within cells that express both LRRK2 and α-synuclein as well as through more indirect pathways that might involve neuroinflammation. Although the link between LRRK2 and disease can be understood in part through LRRK2 kinase activity (phosphotransferase activity), α-synuclein toxicity is multilayered and plausibly interacts with LRRK2 kinase activity in several ways. We discuss common protein interactors like 14-3-3s that may regulate α-synuclein and LRRK2 in disease. Finally, we examine cellular pathways and outcomes common to both mutant α-synuclein expression and LRRK2 activity and points of intersection. Understanding the interplay between these two unlikely partners in disease may provide new therapeutic avenues for PD.


Assuntos
Encéfalo/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/efeitos adversos , Degeneração Neural/metabolismo , Doença de Parkinson/metabolismo , alfa-Sinucleína/efeitos adversos , Animais , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Mutação , Neurônios/metabolismo , Doença de Parkinson/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
14.
Brain ; 141(2): 535-549, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29253129

RESUMO

Tauopathies are neurodegenerative diseases characterized by the aggregation of tau protein. These pathologies exhibit a wide variety of clinical and anatomo-pathological presentations, which may result from different pathological mechanisms. Although tau inclusions are a common feature in all these diseases, recent evidence instead implicates small oligomeric aggregates as drivers of tau-induced toxicity. Hence in vivo model systems displaying either soluble or fibrillary forms of wild-type or mutant tau are needed to better identify their respective pathological pathways. Here we used adeno-associated viruses to mediate gene transfer of human tau to the rat brain to develop models of pure tauopathies. Two different constructs were used, each giving rise to a specific phenotype developing in less than 3 months. First, hTAUWT overexpression led to a strong hyperphosphorylation of the protein, which was associated with neurotoxicity in the absence of any significant aggregation. In sharp contrast, its co-expression with the pro-aggregation peptide TauRD-ΔK280 in the hTAUProAggr group strongly promoted its aggregation into Gallyas-positive neurofibrillary tangles, while preserving neuronal survival. Our results support the hypothesis that soluble tau species are key players of tau-induced neurodegeneration.


Assuntos
Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Tauopatias/metabolismo , Proteínas tau/metabolismo , Animais , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Coloração pela Prata , Tauopatias/diagnóstico por imagem , Transdução Genética , Vimentina/metabolismo , Proteínas tau/genética
15.
Brain ; 141(5): 1434-1454, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29534157

RESUMO

The neurobiological functions of a number of kinases expressed in the brain are unknown. Here, we report new findings on DCLK3 (doublecortin like kinase 3), which is preferentially expressed in neurons in the striatum and dentate gyrus. Its function has never been investigated. DCLK3 expression is markedly reduced in Huntington's disease. Recent data obtained in studies related to cancer suggest DCLK3 could have an anti-apoptotic effect. Thus, we hypothesized that early loss of DCLK3 in Huntington's disease may render striatal neurons more susceptible to mutant huntingtin (mHtt). We discovered that DCLK3 silencing in the striatum of mice exacerbated the toxicity of an N-terminal fragment of mHtt. Conversely, overexpression of DCLK3 reduced neurodegeneration produced by mHtt. DCLK3 also produced beneficial effects on motor symptoms in a knock-in mouse model of Huntington's disease. Using different mutants of DCLK3, we found that the kinase activity of the protein plays a key role in neuroprotection. To investigate the potential mechanisms underlying DCLK3 effects, we studied the transcriptional changes produced by the kinase domain in human striatal neurons in culture. Results show that DCLK3 regulates in a kinase-dependent manner the expression of many genes involved in transcription regulation and nucleosome/chromatin remodelling. Consistent with this, histological evaluation showed DCLK3 is present in the nucleus of striatal neurons and, protein-protein interaction experiments suggested that the kinase domain interacts with zinc finger proteins, including the transcriptional activator adaptor TADA3, a core component of the Spt-ada-Gcn5 acetyltransferase (SAGA) complex which links histone acetylation to the transcription machinery. Our novel findings suggest that the presence of DCLK3 in striatal neurons may play a key role in transcription regulation and chromatin remodelling in these brain cells, and show that reduced expression of the kinase in Huntington's disease could render the striatum highly vulnerable to neurodegeneration.


Assuntos
Corpo Estriado/enzimologia , Proteína Huntingtina/genética , Doença de Huntington/terapia , Mutação/genética , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Quinases Semelhantes a Duplacortina , Regulação para Baixo/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Força da Mão/fisiologia , Doença de Huntington/genética , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora , Neurônios/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Proc Natl Acad Sci U S A ; 113(24): 6671-6, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27226303

RESUMO

The brain is one of the most complex organs, and tools are lacking to assess its cellular morphology in vivo. Here we combine original diffusion-weighted magnetic resonance (MR) spectroscopy acquisition and novel modeling strategies to explore the possibility of quantifying brain cell morphology noninvasively. First, the diffusion of cell-specific metabolites is measured at ultra-long diffusion times in the rodent and primate brain in vivo to observe how cell long-range morphology constrains metabolite diffusion. Massive simulations of particles diffusing in synthetic cells parameterized by morphometric statistics are then iterated to fit experimental data. This method yields synthetic cells (tentatively neurons and astrocytes) that exhibit striking qualitative and quantitative similarities with histology (e.g., using Sholl analysis). With our approach, we measure major interspecies difference regarding astrocytes, whereas dendritic organization appears better conserved throughout species. This work suggests that the time dependence of metabolite diffusion coefficient allows distinguishing and quantitatively characterizing brain cell morphologies noninvasively.


Assuntos
Astrócitos/citologia , Encéfalo , Imagem de Difusão por Ressonância Magnética/métodos , Neurônios/citologia , Animais , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Macaca fascicularis , Masculino , Camundongos
17.
Hum Mol Genet ; 24(1): 76-85, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25143394

RESUMO

Tau abnormalities play a central role in several neurodegenerative diseases, collectively known as tauopathies. In the present study, we examined whether mutant huntingtin (mHtt), which causes Huntington's disease (HD), modifies Tau phosphorylation and subcellular localization using cell and mouse HD models. Initially, we used novel bimolecular fluorescence complementation assays in live cells to evaluate Tau interactions with either wild type (25QHtt) or mutant huntingtin (103QHtt). While 25QHtt and Tau interacted at the level of the microtubule network, 103QHtt and Tau interacted and formed 'ring-like' inclusions localized in the vicinity of the microtubular organizing center (MTOC). Fluorescence recovery after photobleaching experiments also indicated that, whereas homomeric 103QHtt/103QHtt pairs rapidly re-entered into inclusions, heteromeric 103QHtt/Tau pairs remained excluded from the 'ring-like' inclusions. Interestingly, in vitro Tau relocalization was associated to Tau hyperphosphorylation. Consistent with this observation, we found strong Tau hyperphosphorylation in brain samples from two different mouse models of HD, R6/2 and 140CAG knock-in. This was associated with a significant reduction in the levels of Tau phosphatases (PP1, PP2A and PP2B), with no apparent involvement of major Tau kinases. Thus, the present study strongly suggests that expression of mHtt leads to Tau hyperphosphorylation, relocalization and sequestration through direct protein-protein interactions in inclusion-like compartments in the vicinity of the MTOC. Likewise, our data also suggest that Tau alterations may also contribute to HD pathogenesis.


Assuntos
Doença de Huntington/genética , Doença de Huntington/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas tau/metabolismo , Animais , Encéfalo/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Células HEK293 , Humanos , Proteína Huntingtina , Camundongos , Centro Organizador dos Microtúbulos/metabolismo , Mutação , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Transporte Proteico , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
18.
Hum Mol Genet ; 24(6): 1563-73, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25398949

RESUMO

The mechanisms underlying preferential atrophy of the striatum in Huntington's disease (HD) are unknown. One hypothesis is that a set of gene products preferentially expressed in the striatum could determine the particular vulnerability of this brain region to mutant huntingtin (mHtt). Here, we studied the striatal protein µ-crystallin (Crym). Crym is the NADPH-dependent p38 cytosolic T3-binding protein (p38CTBP), a key regulator of thyroid hormone (TH) T3 (3,5,3'-triiodo-l-thyronine) transportation. It has been also recently identified as the enzyme that reduces the sulfur-containing cyclic ketimines, which are potential neurotransmitters. Here, we confirm the preferential expression of the Crym protein in the rodent and macaque striatum. Crym expression was found to be higher in the macaque caudate than in the putamen. Expression of Crym was reduced in the BACHD and Knock-in 140CAG mouse models of HD before onset of striatal atrophy. We show that overexpression of Crym in striatal medium-size spiny neurons using a lentiviral-based strategy in mice is neuroprotective against the neurotoxicity of an N-terminal fragment of mHtt in vivo. Thus, reduction of Crym expression in HD could render striatal neurons more susceptible to mHtt suggesting that Crym may be a key determinant of the vulnerability of the striatum. In addition our work points to Crym as a potential molecular link between striatal degeneration and the THs deregulation reported in HD patients.


Assuntos
Corpo Estriado/patologia , Cristalinas/genética , Doença de Huntington/patologia , Proteínas do Tecido Nervoso/genética , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Expressão Gênica , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Macaca , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Ratos , Cristalinas mu
19.
Eur J Neurosci ; 45(1): 198-206, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27717053

RESUMO

Huntington's disease, an inherited neurodegenerative disorder, results from abnormal polyglutamine extension in the N-terminal region of the huntingtin protein. This mutation causes preferential degeneration of striatal projection neurons. We previously demonstrated, in vitro, that dopaminergic D2 receptor stimulation acted in synergy with expanded huntingtin to increase aggregates formation and striatal death through activation of the Rho/ROCK signaling pathway. In vivo, in a lentiviral-mediated model of expanded huntingtin expression in the rat striatum, we found that the D2 antagonist haloperidol protects striatal neurons against expanded huntingtin-mediated toxicity. Two variant transcripts are generated by alternative splicing of the of D2 receptor gene, the D2R-Long and the D2R-Short, which are thought to play different functional roles. We show herein that overexpression of D2R-Short, but not D2R-Long in cell lines is associated with activation of the RhoA/ROCK signaling pathway. In striatal neurons in culture, the selective D2 agonist Quinpirole triggers phosphorylation of cofilin, a downstream effector of ROCK, which is abrogated by siRNAs that knockdown both D2R-Long and D2R-Short, but not by siRNAs targeting D2R-Long alone. Aggregate formation and neuronal death induced by expanded huntingtin, were potentiated by Quinpirole. This D2 agonist-mediated effect was selectively inhibited by the siRNA targeting both D2R-Long and D2R-Short but not D2R-Long alone. Our data provide evidence for a specific coupling of D2R-Short to the RhoA/ROCK/cofilin pathway, and its involvement in striatal vulnerability to expanded huntingtin. A new route for targeting Rho-ROCK signaling in Huntington's disease is unraveled with our findings.


Assuntos
Corpo Estriado/metabolismo , Doença de Huntington/metabolismo , Neostriado/metabolismo , Neurônios/metabolismo , Receptores de Dopamina D2/metabolismo , Transdução de Sinais , Dopamina/metabolismo , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Isoformas de Proteínas/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/metabolismo
20.
Biochem Biophys Res Commun ; 483(4): 1084-1095, 2017 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-27639641

RESUMO

Huntington's disease (HD) is an inherited progressive neurodegenerative disorder associated with involuntary abnormal movements (chorea), cognitive deficits and psychiatric disturbances. The most striking neuropathological change in HD is the early atrophy of the striatum. While the disease progresses, other brain structures also degenerate, including the cerebral cortex. Changes are also seen outside the brain, in particular weight loss/cachexia despite high dietary intake. The disease is caused by an abnormal expansion of a CAG repeat in the gene encoding the huntingtin protein (Htt). This mutation leads to the expression of a poly-glutamine stretch that changes the biological functions of mutant Htt (mHtt). The mechanisms underlying neurodegeneration in HD are not totally elucidated. Here, we discuss recent results obtained in patients, animal and cellular models suggesting that early disturbance in energy metabolism at least in part associated with mitochondrial defects may play a central role, even though all data are not congruent, possibly because most findings were obtained in cell culture systems or using biochemical analyses of post mortem tissues from rodent models. Thus, we put a particular focus on brain imaging studies that could identify biomarkers of energy defects in vivo and would be of prime interest in preclinical and clinical trials testing the efficacy of new therapies targeting energy metabolism in HD.


Assuntos
Metabolismo Energético , Doença de Huntington/metabolismo , Animais , Cálcio/metabolismo , Corpo Estriado/metabolismo , Humanos , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA