Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34641099

RESUMO

Additive manufacturing, with its rapid advances in materials science, allows for researchers and companies to have the ability to create novel formulations and final parts that would have been difficult or near impossible to fabricate with traditional manufacturing methods. One such 3D printing technology, direct ink writing, is especially advantageous in fields requiring customizable parts with high amounts of functional fillers. Nuclear technology is a prime example of a field that necessitates new material design with regard to unique parts that also provide radiation shielding. Indeed, much effort has been focused on developing new rigid radiation shielding components, but DIW remains a less explored technology with a lot of potential for nuclear applications. In this study, DIW formulations that can behave as radiation shields were developed and were printed with varying amounts of porosity to tune the thermomechanical performance.

2.
Polymers (Basel) ; 13(4)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33671918

RESUMO

In addition to possessing the desirable properties of being a biodegradable and biocompatible polymer fabricated from renewable resources, poly (lactic acid) (PLA) has useful mechanical and thermal attributes that has enabled it to be one of the most widely-used plastics for medicine, manufacturing, and agriculture. Yet, PLA composites have not been heavily explored for use in 3D-printing applications, and the range of feasible materials for the technology is limited, which inhibits its potential growth and industry adoption. In this study, tunable, multifunctional antimicrobial PLA composite filaments for 3D-printing have been fabricated and tested via chemical, thermal, mechanical, and antimicrobial experiments. Thermally stable antimicrobial ceramics, ZnO and TiO2, were used as fillers up to 30 wt%, and poly (ethylene glycol) (PEG) was used as a plasticizer to tune the physical material properties. Results demonstrate that the PLA composite filaments exhibit the thermal phase behaviors and thermal stability suitable for 3D-printing. Additionally, PEG can be used to tune the mechanical properties while not affecting the antimicrobial efficacy that ZnO and TiO2 imbue.

3.
Polymers (Basel) ; 13(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34578026

RESUMO

Primarily used as an encapsulant and soft adhesive, Sylgard 184 is an engineered, high-performance silicone polymer that has applications spanning microfluidics, microelectromechanical systems, mechanobiology, and protecting electronic and non-electronic devices and equipment. Despite its ubiquity, there are improvements to be considered, namely, decreasing its gel point at room temperature, understanding volatile gas products upon aging, and determining how material properties change over its lifespan. In this work, these aspects were investigated by incorporating well-defined compounds (the Ashby-Karstedt catalyst and tetrakis (dimethylsiloxy) silane) into Sylgard 184 to make modified formulations. As a result of these additions, the curing time at room temperature was accelerated, which allowed for Sylgard 184 to be useful within a much shorter time frame. Additionally, long-term thermal accelerated aging was performed on Sylgard 184 and its modifications in order to create predictive lifetime models for its volatile gas generation and material properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA