Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 80(13): 3858-67, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24747895

RESUMO

In chloroethene-contaminated sites undergoing in situ bioremediation, groundwater acidification is a frequent problem in the source zone, and buffering strategies have to be implemented to maintain the pH in the neutral range. An alternative to conventional soluble buffers is silicate mineral particles as a long-term source of alkalinity. In previous studies, the buffering potentials of these minerals have been evaluated based on abiotic dissolution tests and geochemical modeling. In the present study, the buffering potentials of four silicate minerals (andradite, diopside, fayalite, and forsterite) were tested in batch cultures amended with tetrachloroethene (PCE) and inoculated with different organohalide-respiring consortia. Another objective of this study was to determine the influence of pH on the different steps of PCE dechlorination. The consortia showed significant differences in sensitivities toward acidic pH for the different dechlorination steps. Molecular analysis indicated that Dehalococcoides spp. that were present in all consortia were the most pH-sensitive organohalide-respiring guild members compared to Sulfurospirillum spp. and Dehalobacter spp. In batch cultures with silicate mineral particles as pH-buffering agents, all four minerals tested were able to maintain the pH in the appropriate range for reductive dechlorination of chloroethenes. However, complete dechlorination to ethene was observed only with forsterite, diopside, and fayalite. Dissolution of andradite increased the redox potential and did not allow dechlorination. With forsterite, diopside, and fayalite, dechlorination to ethene was observed but at much lower rates for the last two dechlorination steps than with the positive control. This indicated an inhibition effect of silicate minerals and/or their dissolution products on reductive dechlorination of cis-dichloroethene and vinyl chloride. Hence, despite the proven pH-buffering potential of silicate minerals, compatibility with the bacterial community involved in in situ bioremediation has to be carefully evaluated prior to their use for pH control at a specific site.


Assuntos
Soluções Tampão , Consórcios Microbianos , Silicatos/química , Tetracloroetileno/metabolismo , Técnicas de Cultura Celular por Lotes , Biotransformação , Concentração de Íons de Hidrogênio
2.
Biotechnol Bioeng ; 111(12): 2421-35, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24975745

RESUMO

Enhanced biological phosphorus removal (EBPR) from wastewater relies on the preferential selection of active polyphosphate-accumulating organisms (PAO) in the underlying bacterial community continuum. Efficient management of the bacterial resource requires understanding of population dynamics as well as availability of bioanalytical methods for rapid and regular assessment of relative abundances of active PAOs and their glycogen-accumulating competitors (GAO). A systems approach was adopted here toward the investigation of multilevel correlations from the EBPR bioprocess to the bacterial community, metabolic, and enzymatic levels. Two anaerobic-aerobic sequencing-batch reactors were operated to enrich activated sludge in PAOs and GAOs affiliating with "Candidati Accumulibacter and Competibacter phosphates", respectively. Bacterial selection was optimized by dynamic control of the organic loading rate and the anaerobic contact time. The distinct core bacteriomes mainly comprised populations related to the classes Betaproteobacteria, Cytophagia, and Chloroflexi in the PAO enrichment and of Gammaproteobacteria, Alphaproteobacteria, Acidobacteria, and Sphingobacteria in the GAO enrichment. An anaerobic metabolic batch test based on electrical conductivity evolution and a polyphosphatase enzymatic assay were developed for rapid and low-cost assessment of the active PAO fraction and dephosphatation potential of activated sludge. Linear correlations were obtained between the PAO fraction, biomass specific rate of conductivity increase under anaerobic conditions, and polyphosphate-hydrolyzing activity of PAO/GAO mixtures. The correlations between PAO/GAO ratios, metabolic activities, and conductivity profiles were confirmed by simulations with a mathematical model developed in the aqueous geochemistry software PHREEQC.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Reatores Biológicos , Modelos Biológicos , Fósforo/isolamento & purificação , Fósforo/metabolismo , Hidrolases Anidrido Ácido/análise , Anaerobiose , Condutividade Elétrica , Microbiota , Fósforo/química , Esgotos , Biologia de Sistemas
3.
J Contam Hydrol ; 160: 21-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24589423

RESUMO

Accurate control of groundwater pH is of critical importance for in situ biological treatment of chlorinated solvents. The use of ground silicate minerals mixed with groundwater is an appealing buffering strategy as silicate minerals may act as long-term sources of alkalinity. In a previous study, we developed a geochemical model for evaluation of the pH buffering capacity of such minerals. The model included the main microbial processes driving groundwater acidification as well as mineral dissolution. In the present study, abiotic mineral dissolution experiments were conducted with five silicate minerals (andradite, diopside, fayalite, forsterite, nepheline). The goal of the study was to validate the model and to test the buffering capacity of the candidate minerals identified previously. These five minerals increased the pH from acidic to neutral and slightly basic values. The model was revised and improved to represent better the experimental observations. In particular, the experiments revealed the importance of secondary mineral precipitation on the buffering potential of silicates, a process not included in the original formulation. The main secondary phases likely to precipitate were identified through model calibration, as well as the degree of saturation at which they formed. The predictions of the revised geochemical model were in good agreement with the observations, with a correlation coefficient higher than 0.9 in most cases. This study confirmed the potential of silicates to act as pH control agents and showed the reliability of the geochemical model, which can be used as a design tool for field applications.


Assuntos
Biodegradação Ambiental , Água Subterrânea/química , Modelos Biológicos , Modelos Químicos , Silicatos/química , Concentração de Íons de Hidrogênio
4.
Sci Total Environ ; 482-483: 23-35, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24636885

RESUMO

The long-term buffering potential of three silicate minerals (diopside, fayalite and forsterite) present as fine particles in porous quartz sand medium was evaluated in flow-through column experiments over a period of 6.5 months. The columns were operated with PCE concentrations close to saturation and inoculated with the organohalide-respiring consortium SDC-9™, which is able to completely dechlorinate PCE to ethene at high concentrations. In the absence of pH buffering agents, fermentation and organohalide respiration drove the pH close to 6.1, leading to severe inhibition of PCE dechlorination. Forsterite and fayalite were able to maintain the pH close to 7.5 and 6.5, respectively, and to sustain the production of VC and ethene. Diopside gradually lost its buffering capacity during the first 84 days due to the formation of a low reactive leached layer but dechlorination to cis-DCE was still achieved. Among the three minerals tested, forsterite was identified as the best buffering agent. Its presence led to the best PCE removal performance and the highest relative abundance of Dehalococcoides. This study showed that forsterite and fayalite are promising sources of long-term pH buffering for in situ bioremediation of source-zone PCE.


Assuntos
Silicatos/química , Tetracloroetileno/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Concentração de Íons de Hidrogênio , Modelos Químicos , Oxirredução , Tetracloroetileno/análise , Poluentes Químicos da Água/análise
5.
PLoS One ; 8(3): e58864, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23484055

RESUMO

The aim of this work was to evaluate low-cost and easy-to-operate engineering solutions that can be added as a polishing step to small wastewater treatment plants to reduce the micropollutant load to water bodies. The proposed design combines a sand filter/constructed wetland with additional and more advanced treatment technologies (UV degradation, enhanced adsorption to the solid phase, e.g., an engineered substrate) to increase the elimination of recalcitrant compounds. The removal of five micropollutants with different physico-chemical characteristics (three pharmaceuticals: diclofenac, carbamazepine, sulfamethoxazole, one pesticide: mecoprop, and one corrosion inhibitor: benzotriazole) was studied to evaluate the feasibility of the proposed system. Separate batch experiments were conducted to assess the removal efficiency of UV degradation and adsorption. The efficiency of each individual process was substance-specific. No process was effective on all the compounds tested, although elimination rates over 80% using light expanded clay aggregate (an engineered material) were observed. A laboratory-scale flow-through setup was used to evaluate interactions when removal processes were combined. Four of the studied compounds were partially eliminated, with poor removal of the fifth (benzotriazole). The energy requirements for a field-scale installation were estimated to be the same order of magnitude as those of ozonation and powdered activated carbon treatments.


Assuntos
Filtração/métodos , Raios Ultravioleta , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Purificação da Água/métodos , Áreas Alagadas , Ácido 2-Metil-4-clorofenoxiacético/análogos & derivados , Absorção , Carbamazepina , Diclofenaco , Dióxido de Silício/química , Sulfametoxazol , Triazóis , Poluentes Químicos da Água/efeitos da radiação
6.
Sci Total Environ ; 407(13): 3931-43, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18778848

RESUMO

Numerical modelling of subsurface flow constructed wetlands (CWs) gained increasing interest during the last years. The main objective of the modelling work is, on the one hand, to increase the insight in dynamics and functioning of the complex CW system by using mechanistic or process based models that describe transformation and degradation processes in detail. As these mechanistic models are complex and therefore rather difficult to use there is, on the other hand, a need for simplified models for CW design. The design models should be premium to the currently used design guidelines that are mainly based on rules of thumb or simple first-order decay models. This paper presents an overview of the current developments on modelling of subsurface flow CWs based on the modelling work and model developments presented at the WETPOL 2007 symposium. Three kinds of models have been presented: simple transport and first-order decay models, complex mechanistic models, and a simplified model that has been developed for design of CWs. The models are presented and selected results are shown and discussed in relation to the available literature.


Assuntos
Modelos Teóricos , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA