Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.027
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 37: 599-624, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31026411

RESUMO

The intestinal microbiota plays a crucial role in influencing the development of host immunity, and in turn the immune system also acts to regulate the microbiota through intestinal barrier maintenance and immune exclusion. Normally, these interactions are homeostatic, tightly controlled, and organized by both innate and adaptive immune responses. However, a combination of environmental exposures and genetic defects can result in a break in tolerance and intestinal homeostasis. The outcomes of these interactions at the mucosal interface have broad, systemic effects on host immunity and the development of chronic inflammatory or autoimmune disease. The underlying mechanisms and pathways the microbiota can utilize to regulate these diseases are just starting to emerge. Here, we discuss the recent evidence in this area describing the impact of microbiota-immune interactions during inflammation and autoimmunity, with a focus on barrier function and CD4+ T cell regulation.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Diabetes Mellitus Tipo 1/microbiologia , Microbioma Gastrointestinal/imunologia , Inflamação/microbiologia , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/microbiologia , Animais , Autoimunidade , Diabetes Mellitus Tipo 1/imunologia , Homeostase , Humanos , Tolerância Imunológica , Imunomodulação , Inflamação/imunologia , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/imunologia
2.
Cell ; 187(8): 1834-1852.e19, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38569543

RESUMO

Accumulating evidence suggests that cardiovascular disease (CVD) is associated with an altered gut microbiome. Our understanding of the underlying mechanisms has been hindered by lack of matched multi-omic data with diagnostic biomarkers. To comprehensively profile gut microbiome contributions to CVD, we generated stool metagenomics and metabolomics from 1,429 Framingham Heart Study participants. We identified blood lipids and cardiovascular health measurements associated with microbiome and metabolome composition. Integrated analysis revealed microbial pathways implicated in CVD, including flavonoid, γ-butyrobetaine, and cholesterol metabolism. Species from the Oscillibacter genus were associated with decreased fecal and plasma cholesterol levels. Using functional prediction and in vitro characterization of multiple representative human gut Oscillibacter isolates, we uncovered conserved cholesterol-metabolizing capabilities, including glycosylation and dehydrogenation. These findings suggest that cholesterol metabolism is a broad property of phylogenetically diverse Oscillibacter spp., with potential benefits for lipid homeostasis and cardiovascular health.


Assuntos
Bactérias , Doenças Cardiovasculares , Colesterol , Microbioma Gastrointestinal , Humanos , Bactérias/metabolismo , Doenças Cardiovasculares/metabolismo , Colesterol/análise , Colesterol/sangue , Colesterol/metabolismo , Fezes/química , Estudos Longitudinais , Metaboloma , Metabolômica , RNA Ribossômico 16S/metabolismo
3.
Cell ; 186(16): 3427-3442.e22, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37421949

RESUMO

SARS-CoV-2 is associated with broad tissue tropism, a characteristic often determined by the availability of entry receptors on host cells. Here, we show that TMEM106B, a lysosomal transmembrane protein, can serve as an alternative receptor for SARS-CoV-2 entry into angiotensin-converting enzyme 2 (ACE2)-negative cells. Spike substitution E484D increased TMEM106B binding, thereby enhancing TMEM106B-mediated entry. TMEM106B-specific monoclonal antibodies blocked SARS-CoV-2 infection, demonstrating a role of TMEM106B in viral entry. Using X-ray crystallography, cryogenic electron microscopy (cryo-EM), and hydrogen-deuterium exchange mass spectrometry (HDX-MS), we show that the luminal domain (LD) of TMEM106B engages the receptor-binding motif of SARS-CoV-2 spike. Finally, we show that TMEM106B promotes spike-mediated syncytium formation, suggesting a role of TMEM106B in viral fusion. Together, our findings identify an ACE2-independent SARS-CoV-2 infection mechanism that involves cooperative interactions with the receptors heparan sulfate and TMEM106B.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Receptores Virais/metabolismo , Internalização do Vírus , Ligação Proteica , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo
4.
Cell ; 184(12): 3205-3221.e24, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34015271

RESUMO

Monoclonal antibodies (mAbs) are a focus in vaccine and therapeutic design to counteract severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants. Here, we combined B cell sorting with single-cell VDJ and RNA sequencing (RNA-seq) and mAb structures to characterize B cell responses against SARS-CoV-2. We show that the SARS-CoV-2-specific B cell repertoire consists of transcriptionally distinct B cell populations with cells producing potently neutralizing antibodies (nAbs) localized in two clusters that resemble memory and activated B cells. Cryo-electron microscopy structures of selected nAbs from these two clusters complexed with SARS-CoV-2 spike trimers show recognition of various receptor-binding domain (RBD) epitopes. One of these mAbs, BG10-19, locks the spike trimer in a closed conformation to potently neutralize SARS-CoV-2, the recently arising mutants B.1.1.7 and B.1.351, and SARS-CoV and cross-reacts with heterologous RBDs. Together, our results characterize transcriptional differences among SARS-CoV-2-specific B cells and uncover cross-neutralizing Ab targets that will inform immunogen and therapeutic design against coronaviruses.


Assuntos
Anticorpos Neutralizantes/imunologia , Linfócitos B/metabolismo , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/química , Anticorpos Antivirais/sangue , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Complexo Antígeno-Anticorpo/química , Complexo Antígeno-Anticorpo/metabolismo , Reações Antígeno-Anticorpo , Linfócitos B/citologia , Linfócitos B/virologia , COVID-19/patologia , COVID-19/virologia , Microscopia Crioeletrônica , Cristalografia por Raios X , Perfilação da Expressão Gênica , Humanos , Imunoglobulina A/imunologia , Região Variável de Imunoglobulina/química , Região Variável de Imunoglobulina/genética , Domínios Proteicos/imunologia , Multimerização Proteica , Estrutura Quaternária de Proteína , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Análise de Sequência de RNA , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
5.
Cell ; 180(4): 688-702.e13, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32084340

RESUMO

Due to the rapid emergence of antibiotic-resistant bacteria, there is a growing need to discover new antibiotics. To address this challenge, we trained a deep neural network capable of predicting molecules with antibacterial activity. We performed predictions on multiple chemical libraries and discovered a molecule from the Drug Repurposing Hub-halicin-that is structurally divergent from conventional antibiotics and displays bactericidal activity against a wide phylogenetic spectrum of pathogens including Mycobacterium tuberculosis and carbapenem-resistant Enterobacteriaceae. Halicin also effectively treated Clostridioides difficile and pan-resistant Acinetobacter baumannii infections in murine models. Additionally, from a discrete set of 23 empirically tested predictions from >107 million molecules curated from the ZINC15 database, our model identified eight antibacterial compounds that are structurally distant from known antibiotics. This work highlights the utility of deep learning approaches to expand our antibiotic arsenal through the discovery of structurally distinct antibacterial molecules.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas/métodos , Aprendizado de Máquina , Tiadiazóis/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Animais , Antibacterianos/química , Quimioinformática/métodos , Clostridioides difficile/efeitos dos fármacos , Bases de Dados de Compostos Químicos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Tiadiazóis/química
6.
Immunity ; 56(7): 1681-1698.e13, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37301199

RESUMO

CD4+ T cell responses are exquisitely antigen specific and directed toward peptide epitopes displayed by human leukocyte antigen class II (HLA-II) on antigen-presenting cells. Underrepresentation of diverse alleles in ligand databases and an incomplete understanding of factors affecting antigen presentation in vivo have limited progress in defining principles of peptide immunogenicity. Here, we employed monoallelic immunopeptidomics to identify 358,024 HLA-II binders, with a particular focus on HLA-DQ and HLA-DP. We uncovered peptide-binding patterns across a spectrum of binding affinities and enrichment of structural antigen features. These aspects underpinned the development of context-aware predictor of T cell antigens (CAPTAn), a deep learning model that predicts peptide antigens based on their affinity to HLA-II and full sequence of their source proteins. CAPTAn was instrumental in discovering prevalent T cell epitopes from bacteria in the human microbiome and a pan-variant epitope from SARS-CoV-2. Together CAPTAn and associated datasets present a resource for antigen discovery and the unraveling genetic associations of HLA alleles with immunopathologies.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , Captana , SARS-CoV-2 , Antígenos HLA , Epitopos de Linfócito T , Peptídeos
7.
Immunity ; 55(10): 1909-1923.e6, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36115338

RESUMO

Reciprocal interactions between host T helper cells and gut microbiota enforce local immunological tolerance and modulate extra-intestinal immunity. However, our understanding of antigen-specific tolerance to the microbiome is limited. Here, we developed a systematic approach to predict HLA class-II-specific epitopes using the humanized bacteria-originated T cell antigen (hBOTA) algorithm. We identified a diverse set of microbiome epitopes spanning all major taxa that are compatible with presentation by multiple HLA-II alleles. In particular, we uncovered an immunodominant epitope from the TonB-dependent receptor SusC that was universally recognized and ubiquitous among Bacteroidales. In healthy human subjects, SusC-reactive T cell responses were characterized by IL-10-dominant cytokine profiles, whereas in patients with active Crohn's disease, responses were associated with elevated IL-17A. Our results highlight the potential of targeted antigen discovery within the microbiome to reveal principles of tolerance and functional transitions during inflammation.


Assuntos
Doença de Crohn , Epitopos Imunodominantes , Linfócitos T CD4-Positivos , Epitopos de Linfócito T , Humanos , Interleucina-10 , Interleucina-17
8.
Cell ; 165(6): 1493-1506, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27238023

RESUMO

Essential gene functions underpin the core reactions required for cell viability, but their contributions and relationships are poorly studied in vivo. Using CRISPR interference, we created knockdowns of every essential gene in Bacillus subtilis and probed their phenotypes. Our high-confidence essential gene network, established using chemical genomics, showed extensive interconnections among distantly related processes and identified modes of action for uncharacterized antibiotics. Importantly, mild knockdown of essential gene functions significantly reduced stationary-phase survival without affecting maximal growth rate, suggesting that essential protein levels are set to maximize outgrowth from stationary phase. Finally, high-throughput microscopy indicated that cell morphology is relatively insensitive to mild knockdown but profoundly affected by depletion of gene function, revealing intimate connections between cell growth and shape. Our results provide a framework for systematic investigation of essential gene functions in vivo broadly applicable to diverse microorganisms and amenable to comparative analysis.


Assuntos
Bacillus subtilis/genética , Genes Bacterianos , Genes Essenciais , Sistemas CRISPR-Cas , Técnicas de Silenciamento de Genes , Biblioteca Gênica , Redes Reguladoras de Genes , Terapia de Alvo Molecular
10.
Cell ; 156(5): 1045-59, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24581500

RESUMO

Mucus production by goblet cells of the large intestine serves as a crucial antimicrobial protective mechanism at the interface between the eukaryotic and prokaryotic cells of the mammalian intestinal ecosystem. However, the regulatory pathways involved in goblet cell-induced mucus secretion remain largely unknown. Here, we demonstrate that the NLRP6 inflammasome, a recently described regulator of colonic microbiota composition and biogeographical distribution, is a critical orchestrator of goblet cell mucin granule exocytosis. NLRP6 deficiency leads to defective autophagy in goblet cells and abrogated mucus secretion into the large intestinal lumen. Consequently, NLRP6 inflammasome-deficient mice are unable to clear enteric pathogens from the mucosal surface, rendering them highly susceptible to persistent infection. This study identifies an innate immune regulatory pathway governing goblet cell mucus secretion, linking nonhematopoietic inflammasome signaling to autophagy and highlighting the goblet cell as a critical innate immune player in the control of intestinal host-microbial mutualism. PAPERCLIP:


Assuntos
Colo/imunologia , Células Caliciformes/imunologia , Inflamassomos/imunologia , Mucosa Intestinal/imunologia , Receptores de Superfície Celular/imunologia , Animais , Autofagia , Colite/imunologia , Colite/microbiologia , Colo/microbiologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Caliciformes/citologia , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Camundongos , Muco/metabolismo
11.
Nature ; 621(7979): 536-542, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37558870

RESUMO

Coral reef ecosystems are being fundamentally restructured by local human impacts and climate-driven marine heatwaves that trigger mass coral bleaching and mortality1. Reducing local impacts can increase reef resistance to and recovery from bleaching2. However, resource managers lack clear advice on targeted actions that best support coral reefs under climate change3 and sector-based governance means most land- and sea-based management efforts remain siloed4. Here we combine surveys of reef change with a unique 20-year time series of land-sea human impacts that encompassed an unprecedented marine heatwave in Hawai'i. Reefs with increased herbivorous fish populations and reduced land-based impacts, such as wastewater pollution and urban runoff, had positive coral cover trajectories predisturbance. These reefs also experienced a modest reduction in coral mortality following severe heat stress compared to reefs with reduced fish populations and enhanced land-based impacts. Scenario modelling indicated that simultaneously reducing land-sea human impacts results in a three- to sixfold greater probability of a reef having high reef-builder cover four years postdisturbance than if either occurred in isolation. International efforts to protect 30% of Earth's land and ocean ecosystems by 2030 are underway5. Our results reveal that integrated land-sea management could help achieve coastal ocean conservation goals and provide coral reefs with the best opportunity to persist in our changing climate.


Assuntos
Antozoários , Conservação dos Recursos Naturais , Recifes de Corais , Calor Extremo , Aquecimento Global , Oceanos e Mares , Água do Mar , Animais , Conservação dos Recursos Naturais/métodos , Calor Extremo/efeitos adversos , Peixes , Aquecimento Global/estatística & dados numéricos , Objetivos , Havaí , Atividades Humanas , Cooperação Internacional , Água do Mar/análise , Água do Mar/química , Águas Residuárias/análise , Fatores de Tempo
12.
Cell ; 149(6): 1284-97, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22632761

RESUMO

Selective targeting of cancer stem cells (CSCs) offers promise for a new generation of therapeutics. However, assays for both human CSCs and normal stem cells that are amenable to robust biological screens are limited. Using a discovery platform that reveals differences between neoplastic and normal human pluripotent stem cells (hPSC), we identify small molecules from libraries of known compounds that induce differentiation to overcome neoplastic self-renewal. Surprisingly, thioridazine, an antipsychotic drug, selectively targets the neoplastic cells, and impairs human somatic CSCs capable of in vivo leukemic disease initiation while having no effect on normal blood SCs. The drug antagonizes dopamine receptors that are expressed on CSCs and on breast cancer cells as well. These results suggest that dopamine receptors may serve as a biomarker for diverse malignancies, demonstrate the utility of using neoplastic hPSCs for identifying CSC-targeting drugs, and provide support for the use of differentiation as a therapeutic strategy.


Assuntos
Antineoplásicos/farmacologia , Antagonistas de Dopamina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células-Tronco Neoplásicas/efeitos dos fármacos , Tioridazina/farmacologia , Animais , Citarabina/farmacologia , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Mefloquina/farmacologia , Camundongos , Células-Tronco Pluripotentes/efeitos dos fármacos , Piranos/farmacologia
13.
Mol Cell ; 72(2): 222-238.e11, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30293786

RESUMO

DNA polymerase stalling activates the ATR checkpoint kinase, which in turn suppresses fork collapse and breakage. Herein, we describe use of ATR inhibition (ATRi) as a means to identify genomic sites of problematic DNA replication in murine and human cells. Over 500 high-resolution ATR-dependent sites were ascertained using two distinct methods: replication protein A (RPA)-chromatin immunoprecipitation (ChIP) and breaks identified by TdT labeling (BrITL). The genomic feature most strongly associated with ATR dependence was repetitive DNA that exhibited high structure-forming potential. Repeats most reliant on ATR for stability included structure-forming microsatellites, inverted retroelement repeats, and quasi-palindromic AT-rich repeats. Notably, these distinct categories of repeats differed in the structures they formed and their ability to stimulate RPA accumulation and breakage, implying that the causes and character of replication fork collapse under ATR inhibition can vary in a DNA-structure-specific manner. Collectively, these studies identify key sources of endogenous replication stress that rely on ATR for stability.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Replicação do DNA/genética , Repetições de Microssatélites/genética , Animais , Proteínas de Ciclo Celular/genética , Cromatina/genética , Imunoprecipitação da Cromatina/métodos , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Feminino , Instabilidade Genômica/genética , Humanos , Camundongos , Proteína de Replicação A/genética
14.
PLoS Genet ; 19(11): e1011013, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37917668

RESUMO

Exposure of Escherichia coli to sub-inhibitory antibiotics stimulates biofilm formation through poorly characterized mechanisms. Using a high-throughput Congo Red binding assay to report on biofilm matrix production, we screened ~4000 E. coli K12 deletion mutants for deficiencies in this biofilm stimulation response. We screened using three different antibiotics to identify core components of the biofilm stimulation response. Mutants lacking acnA, nuoE, or lpdA failed to respond to sub-MIC cefixime and novobiocin, implicating central metabolism and aerobic respiration in biofilm stimulation. These genes are members of the ArcA/B regulon-controlled by a respiration-sensitive two-component system. Mutants of arcA and arcB had a 'pre-activated' phenotype, where biofilm formation was already high relative to wild type in vehicle control conditions, and failed to increase further with the addition of sub-MIC cefixime. Using a tetrazolium dye and an in vivo NADH sensor, we showed spatial co-localization of increased metabolic activity with sub-lethal concentrations of the bactericidal antibiotics cefixime and novobiocin. Supporting a role for respiratory stress, the biofilm stimulation response to cefixime and novobiocin was inhibited when nitrate was provided as an alternative electron acceptor. Deletion of a gene encoding part of the machinery for respiring nitrate abolished its ameliorating effects, and nitrate respiration increased during growth with sub-MIC cefixime. Finally, in probing the generalizability of biofilm stimulation, we found that the stimulation response to translation inhibitors, unlike other antibiotic classes, was minimally affected by nitrate supplementation, suggesting that targeting the ribosome stimulates biofilm formation in distinct ways. By characterizing the biofilm stimulation response to sub-MIC antibiotics at a systems level, we identified multiple avenues for design of therapeutics that impair bacterial stress management.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/farmacologia , Escherichia coli/genética , Cefixima/farmacologia , Novobiocina/farmacologia , Nitratos , Biofilmes , Testes de Sensibilidade Microbiana
15.
Nat Immunol ; 14(7): 660-7, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23778793

RESUMO

The mammalian intestinal tract harbors a diverse community of trillions of microorganisms, which have co-evolved with the host immune system for millions of years. Many of these microorganisms perform functions critical for host physiology, but the host must remain vigilant to control the microbial community so that the symbiotic nature of the relationship is maintained. To facilitate homeostasis, the immune system ensures that the diverse microbial load is tolerated and anatomically contained, while remaining responsive to microbial breaches and invasion. Although the microbiota is required for intestinal immune development, immune responses also regulate the structure and composition of the intestinal microbiota. Here we discuss recent advances in our understanding of these complex interactions and their implications for human health and disease.


Assuntos
Intestinos/microbiologia , Metagenoma/imunologia , Animais , Homeostase/imunologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/imunologia , Intestinos/imunologia
16.
Nucleic Acids Res ; 51(D1): D690-D699, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36263822

RESUMO

The Comprehensive Antibiotic Resistance Database (CARD; card.mcmaster.ca) combines the Antibiotic Resistance Ontology (ARO) with curated AMR gene (ARG) sequences and resistance-conferring mutations to provide an informatics framework for annotation and interpretation of resistomes. As of version 3.2.4, CARD encompasses 6627 ontology terms, 5010 reference sequences, 1933 mutations, 3004 publications, and 5057 AMR detection models that can be used by the accompanying Resistance Gene Identifier (RGI) software to annotate genomic or metagenomic sequences. Focused curation enhancements since 2020 include expanded ß-lactamase curation, incorporation of likelihood-based AMR mutations for Mycobacterium tuberculosis, addition of disinfectants and antiseptics plus their associated ARGs, and systematic curation of resistance-modifying agents. This expanded curation includes 180 new AMR gene families, 15 new drug classes, 1 new resistance mechanism, and two new ontological relationships: evolutionary_variant_of and is_small_molecule_inhibitor. In silico prediction of resistomes and prevalence statistics of ARGs has been expanded to 377 pathogens, 21,079 chromosomes, 2,662 genomic islands, 41,828 plasmids and 155,606 whole-genome shotgun assemblies, resulting in collation of 322,710 unique ARG allele sequences. New features include the CARD:Live collection of community submitted isolate resistome data and the introduction of standardized 15 character CARD Short Names for ARGs to support machine learning efforts.


Assuntos
Curadoria de Dados , Bases de Dados Factuais , Resistência Microbiana a Medicamentos , Aprendizado de Máquina , Antibacterianos/farmacologia , Genes Bacterianos , Funções Verossimilhança , Software , Anotação de Sequência Molecular
17.
Proc Natl Acad Sci U S A ; 119(49): e2208900119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36454758

RESUMO

Combining multiple therapeutic strategies in NRAS/BRAF mutant melanoma-namely MEK/BRAF kinase inhibitors, immune checkpoint inhibitors (ICIs), and targeted immunotherapies-may offer an improved survival benefit by overcoming limitations associated with any individual therapy. Still, optimal combination, order, and timing of administration remains under investigation. Here, we measure how MEK inhibition (MEKi) alters anti-tumor immunity by utilizing quantitative immunopeptidomics to profile changes in the peptide major histocompatibility molecules (pMHC) repertoire. These data reveal a collection of tumor antigens whose presentation levels are selectively augmented following therapy, including several epitopes present at over 1,000 copies per cell. We leveraged the tunable abundance of MEKi-modulated antigens by targeting four epitopes with pMHC-specific T cell engagers and antibody drug conjugates, enhancing cell killing in tumor cells following MEK inhibition. These results highlight drug treatment as a means to enhance immunotherapy efficacy by targeting specific upregulated pMHCs and provide a methodological framework for identifying, quantifying, and therapeutically targeting additional epitopes of interest.


Assuntos
Melanoma , Quinases de Proteína Quinase Ativadas por Mitógeno , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Antígenos de Neoplasias/genética , Melanoma/tratamento farmacológico , Melanoma/genética , Proteínas Proto-Oncogênicas B-raf/genética , Epitopos
18.
BMC Biol ; 22(1): 151, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977974

RESUMO

BACKGROUND: RNA-DNA hybrids or R-loops are associated with deleterious genomic instability and protective immunoglobulin class switch recombination (CSR). However, the underlying phenomenon regulating the two contrasting functions of R-loops is unknown. Notably, the underlying mechanism that protects R-loops from classic RNase H-mediated digestion thereby promoting persistence of CSR-associated R-loops during CSR remains elusive. RESULTS: Here, we report that during CSR, R-loops formed at the immunoglobulin heavy (IgH) chain are modified by ribose 2'-O-methylation (2'-OMe). Moreover, we find that 2'-O-methyltransferase fibrillarin (FBL) interacts with activation-induced cytidine deaminase (AID) associated snoRNA aSNORD1C to facilitate the 2'-OMe. Moreover, deleting AID C-terminal tail impairs its association with aSNORD1C and FBL. Disrupting FBL, AID or aSNORD1C expression severely impairs 2'-OMe, R-loop stability and CSR. Surprisingly, FBL, AID's interaction partner and aSNORD1C promoted AID targeting to the IgH locus. CONCLUSION: Taken together, our results suggest that 2'-OMe stabilizes IgH-associated R-loops to enable productive CSR. These results would shed light on AID-mediated CSR and explain the mechanism of R-loop-associated genomic instability.


Assuntos
Citidina Desaminase , Switching de Imunoglobulina , Estruturas R-Loop , Switching de Imunoglobulina/genética , Citidina Desaminase/metabolismo , Citidina Desaminase/genética , Citidina Desaminase/química , Animais , Camundongos , Metilação , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/metabolismo , Recombinação Genética , RNA/metabolismo , RNA/genética
19.
Am J Gastroenterol ; 119(7): 1373-1382, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38275237

RESUMO

INTRODUCTION: Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders, but few studies have evaluated mortality risks among individuals with IBS. We explored the association between IBS and all-cause and cause-specific mortality in the UK Biobank. METHODS: We included 502,369 participants from the UK Biobank with mortality data through 2022. IBS was defined using baseline self-report and linkage to primary care or hospital admission data. We estimated hazard ratios (HRs) and 95% confidence intervals (CIs) for all-cause and cause-specific mortality using multivariable Cox proportional hazards regression models within partitioned follow-up time categories (0-5, >5-10, and >10 years). RESULTS: A total of 25,697 participants (5.1%) had a history of IBS at baseline. After a median follow-up of 13.7 years, a total of 44,499 deaths occurred. Having an IBS diagnosis was strongly associated with lower risks of all-cause (HR = 0.70, 95% CI = 0.62-0.78) and all-cancer (HR = 0.69, 95% CI = 0.60-0.79) mortality in the first 5 years of follow-up. These associations were attenuated over follow-up, but even after 10 years of follow-up, associations remained inverse (all-cause: HR = 0.89, 95% CI = 0.84-0.96; all-cancer: HR = 0.87, 95% CI = 0.78-0.97) after full adjustment. Individuals with IBS had decreased risk of mortality from breast, prostate, and colorectal cancers in some of the follow-up time categories. DISCUSSION: We found that earlier during follow-up, having diagnosed IBS was associated with lower mortality risk, and the association attenuated over time. Additional studies to understand whether specific factors, such as lifestyle and healthcare access, explain the inverse association between IBS and mortality are needed.


Assuntos
Causas de Morte , Síndrome do Intestino Irritável , Humanos , Síndrome do Intestino Irritável/mortalidade , Síndrome do Intestino Irritável/epidemiologia , Síndrome do Intestino Irritável/complicações , Feminino , Masculino , Pessoa de Meia-Idade , Reino Unido/epidemiologia , Estudos Prospectivos , Idoso , Adulto , Modelos de Riscos Proporcionais , Fatores de Tempo , Bancos de Espécimes Biológicos , Fatores de Risco , Neoplasias/mortalidade , Biobanco do Reino Unido
20.
Ann Surg Oncol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916700

RESUMO

BACKGROUND: Breast-conserving surgery (BCS) followed by adjuvant radiotherapy (RT) is a standard treatment for ductal carcinoma in situ (DCIS). A low-risk patient subset that does not benefit from RT has not yet been clearly identified. The DCISionRT test provides a clinically validated decision score (DS), which is prognostic of 10-year in-breast recurrence rates (invasive and non-invasive) and is also predictive of RT benefit. This analysis presents final outcomes from the PREDICT prospective registry trial aiming to determine how often the DCISionRT test changes radiation treatment recommendations. METHODS: Overall, 2496 patients were enrolled from February 2018 to January 2022 at 63 academic and community practice sites and received DCISionRT as part of their care plan. Treating physicians reported their treatment recommendations pre- and post-test as well as the patient's preference. The primary endpoint was to identify the percentage of patients where testing led to a change in RT recommendation. The impact of the test on RT treatment recommendation was physician specialty, treatment settings, individual clinical/pathological features and RTOG 9804 like criteria. Multivariate logisitc regression analysis was used to estimate the odds ratio (ORs) for factors associated with the post-test RT recommendations. RESULTS: RT recommendation changed 38% of women, resulting in a 20% decrease in the overall recommendation of RT (p < 0.001). Of those women initially recommended no RT (n = 583), 31% were recommended RT post-test. The recommendation for RT post-test increased with increasing DS, from 29% to 66% to 91% for DS <2, DS 2-4, and DS >4, respectively. On multivariable analysis, DS had the strongest influence on final RT recommendation (odds ratio 22.2, 95% confidence interval 16.3-30.7), which was eightfold greater than clinicopathologic features. Furthermore, there was an overall change in the recommendation to receive RT in 42% of those patients meeting RTOG 9804-like low-risk criteria. CONCLUSIONS: The test results provided information that changes treatment recommendations both for and against RT use in large population of women with DCIS treated in a variety of clinical settings. Overall, clinicians changed their recommendations to include or omit RT for 38% of women based on the test results. Based on published clinical validations and the results from current study, DCISionRT may aid in preventing the over- and undertreatment of clinicopathological 'low-risk' and 'high-risk' DCIS patients. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT03448926 ( https://clinicaltrials.gov/study/NCT03448926 ).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA