Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mamm Genome ; 31(3-4): 95-109, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32246189

RESUMO

The availability of an in vitro canine cell line would reduce the need for dogs for primary in vitro cell culture and reduce overall cost in pre-clinical studies. An immortalized canine muscle cell line, named Myok9, from primary myoblasts of a normal dog has been developed by the authors. Immortalization was performed by SV40 viral transfection of the large T antigen into the primary muscle cells. Proliferation assays, growth curves, quantitative PCR, western blotting, mass spectrometry, and light microscopy were performed to characterize the MyoK9 cell line at different stages of growth and differentiation. The expression of muscle-related genes was determined to assess myogenic origin. Myok9 cells expressed dystrophin and other muscle-specific proteins during differentiation, as detected with mass spectrometry and western blotting. Using the Myok9 cell line, new therapies before moving to pre-clinical studies to enhance the number and speed of analyses and reduce the cost of early experimentation can be tested now. This cell line will be made available to the research community to further evaluate potential therapeutics.


Assuntos
Mioblastos/citologia , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Proliferação de Células/fisiologia , Cães , Músculos/citologia , Infecções por Polyomavirus/patologia , Vírus 40 dos Símios/patogenicidade , Transfecção/métodos
2.
Hum Mol Genet ; 23(24): 6458-69, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25027324

RESUMO

It is expected that serum protein biomarkers in Duchenne muscular dystrophy (DMD) will reflect disease pathogenesis, progression and aid future therapy developments. Here, we describe use of quantitative in vivo stable isotope labeling in mammals to accurately compare serum proteomes of wild-type and dystrophin-deficient mdx mice. Biomarkers identified in serum from two independent dystrophin-deficient mouse models (mdx-Δ52 and mdx-23) were concordant with those identified in sera samples of DMD patients. Of the 355 mouse sera proteins, 23 were significantly elevated and 4 significantly lower in mdx relative to wild-type mice (P-value < 0.001). Elevated proteins were mostly of muscle origin: including myofibrillar proteins (titin, myosin light chain 1/3, myomesin 3 and filamin-C), glycolytic enzymes (aldolase, phosphoglycerate mutase 2, beta enolase and glycogen phosphorylase), transport proteins (fatty acid-binding protein, myoglobin and somatic cytochrome-C) and others (creatine kinase M, malate dehydrogenase cytosolic, fibrinogen and parvalbumin). Decreased proteins, mostly of extracellular origin, included adiponectin, lumican, plasminogen and leukemia inhibitory factor receptor. Analysis of sera from 1 week to 7 months old mdx mice revealed age-dependent changes in the level of these biomarkers with most biomarkers acutely elevated at 3 weeks of age. Serum analysis of DMD patients, with ages ranging from 4 to 15 years old, confirmed elevation of 20 of the murine biomarkers in DMD, with similar age-related changes. This study provides a panel of biomarkers that reflect muscle activity and pathogenesis and should prove valuable tool to complement natural history studies and to monitor treatment efficacy in future clinical trials.


Assuntos
Envelhecimento/sangue , Proteínas Sanguíneas/metabolismo , Distrofina/deficiência , Distrofia Muscular Animal/sangue , Distrofia Muscular de Duchenne/sangue , Adolescente , Envelhecimento/genética , Envelhecimento/patologia , Animais , Biomarcadores/sangue , Proteínas Sanguíneas/genética , Criança , Pré-Escolar , Análise por Conglomerados , Distrofina/genética , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Anotação de Sequência Molecular , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Especificidade da Espécie
3.
Clin Proteomics ; 13: 9, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27051355

RESUMO

Assessments of disease progression and response to therapies in Duchenne muscular dystrophy (DMD) patients remain challenging. Current DMD patient assessments include complex physical tests and invasive procedures such as muscle biopsies, which are not suitable for young children. Defining alternative, less invasive and objective outcome measures to assess disease progression and response to therapy will aid drug development and clinical trials in DMD. In this review we highlight advances in development of non-invasive blood circulating biomarkers as a means to assess disease progression and response to therapies in DMD.

4.
Am J Respir Cell Mol Biol ; 53(1): 22-32, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25692303

RESUMO

Alterations in epithelial secretions and mucociliary clearance contribute to chronic bacterial infection in cystic fibrosis (CF) lung disease, but whether CF lungs are unchanged in the absence of infection remains controversial. A proteomic comparison of airway secretions from subjects with CF and control subjects shows alterations in key biological processes, including immune response and proteolytic activity, but it is unclear if these are due to mutant CF transmembrane conductance regulator (CFTR) and/or chronic infection. We hypothesized that the CF lung apical secretome is altered under constitutive conditions in the absence of inflammatory cells and pathogens. To test this, we performed quantitative proteomics of in vitro apical secretions from air-liquid interface cultures of three life-extended CF (ΔF508/ΔF508) and three non-CF human bronchial epithelial cells after labeling of CF cells by stable isotope labeling with amino acids in cell culture. Mass spectrometry analysis identified and quantitated 666 proteins across samples, of which 70 exhibited differential enrichment or depletion in CF secretions (±1.5-fold change; P < 0.05). The key molecular functions were innate immunity (24%), cytoskeleton/extracellular matrix organization (24%), and protease/antiprotease activity (17%). Oxidative proteins and classical complement pathway proteins that are altered in CF secretions in vivo were not altered in vitro. Specific differentially increased proteins-MUC5AC and MUC5B mucins, fibronectin, and matrix metalloproteinase-9-were validated by antibody-based assays. Overall, the in vitro CF secretome data are indicative of a constitutive airway epithelium with altered innate immunity, suggesting that downstream consequences of mutant CFTR set the stage for chronic inflammation and infection in CF airways.


Assuntos
Brônquios/metabolismo , Fibrose Cística/metabolismo , Proteoma/metabolismo , Proteômica , Mucosa Respiratória/metabolismo , Brônquios/patologia , Linhagem Celular , Doença Crônica , Fibrose Cística/genética , Fibrose Cística/patologia , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Proteoma/genética , Mucosa Respiratória/patologia
5.
Ann Rheum Dis ; 74(10): 1931-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24906636

RESUMO

OBJECTIVES: Aicardi-Goutières syndrome (AGS) is an autoimmune disorder that shares similarities with systemic lupus erythematous. AGS inflammatory responses specially target the cerebral white matter. However, it remains uncertain why the brain is the most affected organ, and little is known about the presence of autoantibodies in AGS. Here, we aim to profile specific autoantibodies in AGS and to determine whether these autoantibodies target cerebral epitopes. METHODS: Using a multiplex microarray, we assessed the spectrum of serum autoantibodies in 56 genetically confirmed patients with AGS. We investigated the presence of immunoglobulins in AGS brain specimens using immunohistochemistry and studied the reactivity of sera against brain epitopes with proteomics. RESULTS: Serum from patients exhibited high levels of IgGs against nuclear antigens (gP210, Nup62, PCNA, Ro/SSA, Sm/RNP complex, SS-A/SS-B), components of the basement membrane (entactin, laminin), fibrinogen IV and gliadin. Upon testing whether antibodies in AGS could be found in the central nervous system, IgGs were identified to target in vivo endothelial cells in vivo and astrocytes in brain sections of deceased patients with AGS. Using a proteomics approach, we were able to confirm that IgGs in serum samples from AGS patients bind epitopes present in the cerebral white matter. CONCLUSIONS: Patients with AGS produce a broad spectrum of autoantibodies unique from other autoimmune diseases. Some of these autoantibodies target endothelial cells and astrocytes in the brain of the affected patients, perhaps explaining the prominence of neurological disease in the AGS phenotype.


Assuntos
Autoanticorpos/análise , Doenças Autoimunes do Sistema Nervoso/imunologia , Encéfalo/imunologia , Malformações do Sistema Nervoso/imunologia , Adolescente , Adulto , Astrócitos/imunologia , Autoanticorpos/sangue , Autoantígenos/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes do Sistema Nervoso/genética , Criança , Pré-Escolar , Endotélio Vascular/imunologia , Feminino , Genótipo , Humanos , Imunoglobulina G/análise , Imunoglobulina M/análise , Lactente , Recém-Nascido , Lúpus Eritematoso Sistêmico/imunologia , Masculino , Doença Mista do Tecido Conjuntivo/imunologia , Malformações do Sistema Nervoso/genética , Proteômica/métodos , Adulto Jovem
6.
Pediatr Res ; 77(2): 356-62, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25420179

RESUMO

BACKGROUND: Chronic rhinosinusitis (CRS) is characterized by mucous overproduction and submucosal gland hyperplasia. The global protein profile of sinonasal secretions in pediatric CRS has not been studied. We hypothesized that MUC5B, a glandular mucin, would be relatively increased in CRS secretions compared to other mucins. METHODS: Secretions were collected at Children's National Health System (Children's National) from CRS patients undergoing sinus surgery and from control patients without CRS undergoing craniofacial procedures. Proteins were extracted, digested to peptides, and analyzed by mass spectometry. Fold change significance was calculated using the QSpec algorithm. Western blot analysis was performed to validate proteomic findings. RESULTS: In total, 294 proteins were identified. Although both MUC5B and MUC5AC were identified in a majority of samples, the relative abundance of MUC5B was found to be significantly higher (P < 0.05). Western blot data validated these findings. Other proteins with the highest significant positive-fold change in CRS samples were BP1 fold-containing family A member 1, chitinase-3-like protein 1, plastin-2, serpin 10, and BP1 fold-containing family B member 1. CONCLUSION: Overall, our data demonstrate an increase of MUC5B abundance in the sinus secretions of pediatric patients with CRS.


Assuntos
Mucina-5B/metabolismo , Mucosa/metabolismo , Seios Paranasais/metabolismo , Rinite/metabolismo , Sinusite/metabolismo , Adolescente , Western Blotting , Criança , Pré-Escolar , Eletroforese em Gel de Poliacrilamida , Ontologia Genética , Humanos , Proteômica
7.
Mol Cell Proteomics ; 12(5): 1061-73, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23297347

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disorder caused by a mutation in the dystrophin gene. DMD is characterized by progressive weakness of skeletal, cardiac, and respiratory muscles. The molecular mechanisms underlying dystrophy-associated muscle weakness and damage are not well understood. Quantitative proteomics techniques could help to identify disease-specific pathways. Recent advances in the in vivo labeling strategies such as stable isotope labeling in mouse (SILAC mouse) with (13)C6-lysine or stable isotope labeling in mammals (SILAM) with (15)N have enabled accurate quantitative analysis of the proteomes of whole organs and tissues as a function of disease. Here we describe the use of the SILAC mouse strategy to define the underlying pathological mechanisms in dystrophin-deficient skeletal muscle. Differential SILAC proteome profiling was performed on the gastrocnemius muscles of 3-week-old (early stage) dystrophin-deficient mdx mice and wild-type (normal) mice. The generated data were further confirmed in an independent set of mdx and normal mice using a SILAC spike-in strategy. A total of 789 proteins were quantified; of these, 73 were found to be significantly altered between mdx and normal mice (p < 0.05). Bioinformatics analyses using Ingenuity Pathway software established that the integrin-linked kinase pathway, actin cytoskeleton signaling, mitochondrial energy metabolism, and calcium homeostasis are the pathways initially affected in dystrophin-deficient muscle at early stages of pathogenesis. The key proteins involved in these pathways were validated by means of immunoblotting and immunohistochemistry in independent sets of mdx mice and in human DMD muscle biopsies. The specific involvement of these molecular networks early in dystrophic pathology makes them potential therapeutic targets. In sum, our findings indicate that SILAC mouse strategy has uncovered previously unidentified pathological pathways in mouse models of human skeletal muscle disease.


Assuntos
Redes e Vias Metabólicas , Distrofia Muscular de Duchenne/metabolismo , Proteoma/metabolismo , Animais , Encéfalo/metabolismo , Distrofina/deficiência , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Especificidade de Órgãos , Proteômica
8.
Mol Cell Proteomics ; 12(10): 2935-51, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23764502

RESUMO

One of the principal goals of glycoprotein research is to correlate glycan structure and function. Such correlation is necessary in order for one to understand the mechanisms whereby glycoprotein structure elaborates the functions of myriad proteins. The accurate comparison of glycoforms and quantification of glycosites are essential steps in this direction. Mass spectrometry has emerged as a powerful analytical technique in the field of glycoprotein characterization. Its sensitivity, high dynamic range, and mass accuracy provide both quantitative and sequence/structural information. As part of the 2012 ABRF Glycoprotein Research Group study, we explored the use of mass spectrometry and ancillary methodologies to characterize the glycoforms of two sources of human prostate specific antigen (PSA). PSA is used as a tumor marker for prostate cancer, with increasing blood levels used to distinguish between normal and cancer states. The glycans on PSA are believed to be biantennary N-linked, and it has been observed that prostate cancer tissues and cell lines contain more antennae than their benign counterparts. Thus, the ability to quantify differences in glycosylation associated with cancer has the potential to positively impact the use of PSA as a biomarker. We studied standard peptide-based proteomics/glycomics methodologies, including LC-MS/MS for peptide/glycopeptide sequencing and label-free approaches for differential quantification. We performed an interlaboratory study to determine the ability of different laboratories to correctly characterize the differences between glycoforms from two different sources using mass spectrometry methods. We used clustering analysis and ancillary statistical data treatment on the data sets submitted by participating laboratories to obtain a consensus of the glycoforms and abundances. The results demonstrate the relative strengths and weaknesses of top-down glycoproteomics, bottom-up glycoproteomics, and glycomics methods.


Assuntos
Glicoproteínas/metabolismo , Calicreínas/metabolismo , Polissacarídeos/metabolismo , Antígeno Prostático Específico/metabolismo , Cromatografia Líquida , Glicosilação , Humanos , Laboratórios , Espectrometria de Massas/métodos , Proteômica/métodos , Reprodutibilidade dos Testes
9.
J Neurosci ; 33(2): 709-21, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23303949

RESUMO

Doublecortin (Dcx) is the causative gene for X-linked lissencephaly, which encodes a microtubule-binding protein. Axon tracts are abnormal in both affected individuals and in animal models. To determine the reason for the axon tract defect, we performed a semiquantitative proteomic analysis of the corpus callosum in mice mutant for Dcx. In axons from mice mutant for Dcx, widespread differences are found in actin-associated proteins as compared with wild-type axons. Decreases in actin-binding proteins α-actinin-1 and α-actinin-4 and actin-related protein 2/3 complex subunit 3 (Arp3), are correlated with dysregulation in the distribution of filamentous actin (F-actin) in the mutant neurons with increased F-actin around the cell body and decreased F-actin in the neurites and growth cones. The actin distribution defect can be rescued by full-length Dcx and further enhanced by Dcx S297A, the unphosphorylatable mutant, but not with the truncation mutant of Dcx missing the C-terminal S/P-rich domain. Thus, the C-terminal region of Dcx dynamically regulates formation of F-actin features in developing neurons, likely through interaction with spinophilin, but not through α-actinin-4 or Arp3. We show with that the phenotype of Dcx/Doublecortin-like kinase 1 deficiency is consistent with actin defect, as these axons are selectively deficient in axon guidance, but not elongation.


Assuntos
Actinas/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Proteínas de Neurofilamentos/fisiologia , Neurônios/fisiologia , Neuropeptídeos/fisiologia , Proteína 3 Relacionada a Actina/metabolismo , Actinina/metabolismo , Actinas/metabolismo , Animais , Axônios/fisiologia , Western Blotting , Células Cultivadas , Corpo Caloso/citologia , Corpo Caloso/crescimento & desenvolvimento , Corpo Caloso/fisiologia , Bases de Dados Factuais , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Eletroforese em Gel de Poliacrilamida , Feminino , Imuno-Histoquímica , Masculino , Espectrometria de Massas , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neuropeptídeos/genética , Proteômica
10.
Am J Respir Cell Mol Biol ; 50(2): 292-300, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24010916

RESUMO

The polarity of the conducting airway epithelium is responsible for its directional secretion. This is an essential characteristic of lung integrity and function that dictates interactions between the external environment (apical) and subepithelial structures (basolateral). Defining the directional secretomes in the in vitro human bronchial epithelial (HBE) differentiated model could bring valuable insights into lung biology and pulmonary diseases. Normal primary HBE cells (n = 3) were differentiated into respiratory tract epithelium. Apical and basolateral secretions (24 h) were processed for proteome profiling and pathway analysis. A total of 243 proteins were identified in secretions from all HBE cultures combined. Of these, 51% were classified as secreted proteins, including true secreted proteins (36%) and exosomal proteins (15%). Close examination revealed consistent secretion of 69 apical proteins and 13 basolateral proteins and differential secretion of 25 proteins across all donors. Expression of Annexin A4 in apical secretions and Desmoglein-2 in basolateral secretions was validated using Western blot or ELISA in triplicate independent experiments. To the best of our knowledge, this is the first study defining apical and basolateral secretomes in the in vitro differentiated HBE model. The data demonstrate that epithelial polarity directs protein secretion with different patterns of biological processes to the apical and basolateral surfaces that are consistent with normal bronchial epithelium homeostatic functions. Applying this in vitro directional secretome model to lung diseases may elucidate their molecular pathophysiology and help define potential therapeutic targets.


Assuntos
Polaridade Celular/fisiologia , Células Epiteliais/metabolismo , Pulmão/metabolismo , Mucosa Respiratória/metabolismo , Asma/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Desmogleína 2/metabolismo , Células Epiteliais/citologia , Humanos
11.
Biochim Biophys Acta ; 1834(11): 2454-61, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23603790

RESUMO

Proteomic analysis of human body fluids is highly challenging, therefore many researchers are redirecting efforts toward secretome profiling. The goal is to define potential biomarkers and therapeutic targets in the secretome that can be traced back in accessible human body fluids. However, currently there is a lack of secretome profiles of normal human primary cells making it difficult to assess the biological meaning of current findings. In this study we sought to establish secretome profiles of human primary cells obtained from healthy donors with the goal of building a human secretome atlas. Such an atlas can be used as a reference for discovery of potential disease associated biomarkers and eventually novel therapeutic targets. As a preliminary study, secretome profiles were established for six different types of human primary cell cultures and checked for overlaps with the three major human body fluids including plasma, cerebrospinal fluid and urine. About 67% of the 1054 identified proteins in the secretome of these primary cells occurred in at least one body fluid. Furthermore, comparison of the secretome profiles of two human glioblastoma cell lines to this new human secretome atlas enabled unambiguous identification of potential brain tumor biomarkers. These biomarkers can be easily monitored in different body fluids using stable isotope labeled standard proteins. The long term goal of this study is to establish a comprehensive online human secretome atlas for future use as a reference for any disease related secretome study. This article is part of a Special Issue entitled: An Updated Secretome.


Assuntos
Proteoma/metabolismo , Proteômica/métodos , Biomarcadores/análise , Biomarcadores/sangue , Biomarcadores/metabolismo , Líquidos Corporais/química , Líquidos Corporais/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Glioblastoma/sangue , Glioblastoma/diagnóstico , Glioblastoma/metabolismo , Humanos , Proteoma/análise , Espectrometria de Massas em Tandem/métodos
12.
Am J Pathol ; 183(5): 1411-24, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24160322

RESUMO

Both Duchenne and golden retriever muscular dystrophy (GRMD) are caused by dystrophin deficiency. The Duchenne muscular dystrophy sartorius muscle and orthologous GRMD cranial sartorius (CS) are relatively spared/hypertrophied. We completed hierarchical clustering studies to define molecular mechanisms contributing to this differential involvement and their role in the GRMD phenotype. GRMD dogs with larger CS muscles had more severe deficits, suggesting that selective hypertrophy could be detrimental. Serial biopsies from the hypertrophied CS and other atrophied muscles were studied in a subset of these dogs. Myostatin showed an age-dependent decrease and an inverse correlation with the degree of GRMD CS hypertrophy. Regulators of myostatin at the protein (AKT1) and miRNA (miR-539 and miR-208b targeting myostatin mRNA) levels were altered in GRMD CS, consistent with down-regulation of myostatin signaling, CS hypertrophy, and functional rescue of this muscle. mRNA and proteomic profiling was used to identify additional candidate genes associated with CS hypertrophy. The top-ranked network included α-dystroglycan and like-acetylglucosaminyltransferase. Proteomics demonstrated increases in myotrophin and spectrin that could promote hypertrophy and cytoskeletal stability, respectively. Our results suggest that multiple pathways, including decreased myostatin and up-regulated miRNAs, α-dystroglycan/like-acetylglucosaminyltransferase, spectrin, and myotrophin, contribute to hypertrophy and functional sparing of the CS. These data also underscore the muscle-specific responses to dystrophin deficiency and the potential deleterious effects of differential muscle involvement.


Assuntos
Distrofina/deficiência , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular Animal/patologia , Transdução de Sinais , Animais , Análise por Conglomerados , Cães , Distroglicanas/metabolismo , Distrofina/metabolismo , Imunofluorescência , Glicosilação , Hipertrofia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Distrofia Muscular Animal/genética , Miostatina/metabolismo , Tamanho do Órgão , Fenótipo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Espectrina/metabolismo , Regulação para Cima/genética , Utrofina/metabolismo
13.
Arthritis Rheum ; 65(12): 3248-58, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24022788

RESUMO

OBJECTIVE: Myositis is characterized by severe muscle weakness. We and others have previously shown that endoplasmic reticulum (ER) stress plays a role in the pathogenesis of myositis. The present study was undertaken to identify perturbed pathways and assess their contribution to muscle disease in a mouse myositis model. METHODS: Stable isotope labeling with amino acids in cell culture (SILAC) was used to identify alterations in the skeletal muscle proteome of myositic mice in vivo. Differentially altered protein levels identified in the initial comparisons were validated using a liquid chromatography tandem mass spectrometry spike-in strategy and further confirmed by immunoblotting. In addition, we evaluated the effect of a proteasome inhibitor, bortezomib, on the disease phenotype, using well-standardized functional, histologic, and biochemical assessments. RESULTS: With the SILAC technique we identified significant alterations in levels of proteins belonging to the ER stress response, ubiquitin proteasome pathway (UPP), oxidative phosphorylation, glycolysis, cytoskeleton, and muscle contractile apparatus categories. We validated the myositis-related changes in the UPP and demonstrated a significant increase in the ubiquitination of muscle proteins as well as a specific increase in ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL-1) in myositis, but not in muscle affected by other dystrophies or normal muscle. Inhibition of the UPP with bortezomib significantly improved muscle function and also significantly reduced tumor necrosis factor α expression in the skeletal muscle of mice with myositis. CONCLUSION: Our findings indicate that ER stress activates downstream UPPs and contributes to muscle degeneration and that UCHL-1 is a potential biomarker for disease progression. UPP inhibition offers a potential therapeutic strategy for myositis.


Assuntos
Músculo Esquelético/metabolismo , Miosite/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Ubiquitinação/fisiologia , Animais , Ácidos Borônicos/farmacologia , Bortezomib , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Camundongos , Debilidade Muscular/metabolismo , Debilidade Muscular/patologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Miosite/patologia , Inibidores de Proteassoma/farmacologia , Pirazinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Ubiquitinação/efeitos dos fármacos
14.
Cell Mol Life Sci ; 70(12): 2159-74, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23344255

RESUMO

Duchenne muscular dystrophy results from loss of the protein dystrophin, which links the intracellular cytoskeletal network with the extracellular matrix, but deficiency in this function does not fully explain the onset or progression of the disease. While some intracellular events involved in the degeneration of dystrophin-deficient muscle fibers have been well characterized, changes in their secretory profile are undescribed. To analyze the secretome profile of mdx myotubes independently of myonecrosis, we labeled the proteins of mdx and wild-type myotubes with stable isotope-labeled amino acids (SILAC), finding marked enrichment of vesicular markers in the mdx secretome. These included the lysosomal-associated membrane protein, LAMP1, that co-localized in vesicles with an over-secreted cytoskeletal protein, myosin light chain 1. These LAMP1/MLC1-3-positive vesicles accumulated in the cytosol of mdx myotubes and were secreted into the culture medium in a range of abnormal densities. Restitution of dystrophin expression, by exon skipping, to some 30 % of the control value, partially normalized the secretome profile and the excess LAMP1 accumulation. Together, our results suggest that a lack of dystrophin leads to a general dysregulation of vesicle trafficking. We hypothesize that disturbance of the export of proteins through vesicles occurs before, and then concurrently with, the myonecrotic cascade and contributes chronically to the pathophysiology of DMD, thereby presenting us with a range of new potential therapeutic targets.


Assuntos
Distrofina/deficiência , Proteínas de Membrana Lisossomal/metabolismo , Fibras Musculares Esqueléticas/patologia , Distrofia Muscular de Duchenne/metabolismo , Vesículas Secretórias/metabolismo , Actinas/análise , Aminoácidos/metabolismo , Animais , Western Blotting , Linhagem Celular , Cromatografia Líquida , Biologia Computacional , Immunoblotting , Marcação por Isótopo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Fibras Musculares Esqueléticas/metabolismo , Vesículas Secretórias/ultraestrutura , Estatísticas não Paramétricas , Espectrometria de Massas em Tandem
15.
Skelet Muscle ; 14(1): 2, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229112

RESUMO

BACKGROUND: Multiple clinical trials to assess the efficacy of AAV-directed gene transfer in participants with Duchenne muscular dystrophy (DMD) are ongoing. The success of these trials currently relies on standard functional outcome measures that may exhibit variability within and between participants, rendering their use as sole measures of drug efficacy challenging. Given this, supportive objective biomarkers may be useful in enhancing observed clinical results. Creatine kinase (CK) is traditionally used as a diagnostic biomarker of DMD, but its potential as a robust pharmacodynamic (PD) biomarker is difficult due to the wide variability seen within the same participant over time. Thus, there is a need for the discovery and validation of novel PD biomarkers to further support and bolster traditional outcome measures of efficacy in DMD. METHOD: Potential PD biomarkers in DMD participant urine were examined using a proteomic approach on the Somalogic platform. Findings were confirmed in both mdx mice and Golden Retriever muscular dystrophy (GRMD) dog plasma samples. RESULTS: Changes in the N-terminal fragment of titin, a well-known, previously characterized biomarker of DMD, were correlated with the expression of microdystrophin protein in mice, dogs, and humans. Further, titin levels were sensitive to lower levels of expressed microdystrophin when compared to CK. CONCLUSION: The measurement of objective PD biomarkers such as titin may provide additional confidence in the assessment of the mechanism of action and efficacy in gene therapy clinical trials of DMD. TRIAL REGISTRATION: ClinicalTrials.gov NCT03368742.


Assuntos
Distrofia Muscular de Duchenne , Proteômica , Humanos , Camundongos , Animais , Cães , Conectina/genética , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Biomarcadores , Creatina Quinase , Músculo Esquelético/metabolismo , Proteínas Quinases/metabolismo
16.
J Biol Chem ; 287(36): 30455-67, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22778268

RESUMO

Skeletal muscles are proficient at healing from a variety of injuries. Healing occurs in two phases, early and late phase. Early phase involves healing the injured sarcolemma and restricting the spread of damage to the injured myofiber. Late phase of healing occurs a few days postinjury and involves interaction of injured myofibers with regenerative and inflammatory cells. Of the two phases, cellular and molecular processes involved in the early phase of healing are poorly understood. We have implemented an improved sarcolemmal proteomics approach together with in vivo labeling of proteins with modified amino acids in mice to study acute changes in the sarcolemmal proteome in early phase of myofiber injury. We find that a notable early phase response to muscle injury is an increased association of mitochondria with the injured sarcolemma. Real-time imaging of live myofibers during injury demonstrated that the increased association of mitochondria with the injured sarcolemma involves translocation of mitochondria to the site of injury, a response that is lacking in cultured myoblasts. Inhibiting mitochondrial function at the time of injury inhibited healing of the injured myofibers. This identifies a novel role of mitochondria in the early phase of healing injured myofibers.


Assuntos
Mitocôndrias Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Proteômica , Sarcolema/metabolismo , Cicatrização/fisiologia , Animais , Linhagem Celular Transformada , Feminino , Masculino , Camundongos , Fibras Musculares Esqueléticas/patologia , Sarcolema/patologia
17.
J Biol Chem ; 287(51): 42469-79, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23093411

RESUMO

DNA replication in all eukaryotes starts with the process of loading the replicative helicase MCM2-7 onto chromatin during late mitosis of the cell cycle. MCM2-7 is a key component of the prereplicative complex (pre-RC), which is loaded onto chromatin by the concerted action of origin recognition complex, Cdc6, and Cdt1. Here, we demonstrate that And-1 is assembled onto chromatin in late mitosis and early G(1) phase before the assembly of pre-RC in human cells. And-1 forms complexes with MCM2-7 to facilitate the assembly of MCM2-7 onto chromatin at replication origins in late mitosis and G(1) phase. We also present data to show that depletion of And-1 significantly reduces the interaction between Cdt1 and MCM7 in G(1) phase cells. Thus, human And-1 facilitates loading of the MCM2-7 helicase onto chromatin during the assembly of pre-RC.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Acetilação , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Cromatina/metabolismo , Proteínas de Ligação a DNA/química , Fase G1 , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Humanos , Componente 2 do Complexo de Manutenção de Minicromossomo , Componente 7 do Complexo de Manutenção de Minicromossomo , Proteínas Nucleares/metabolismo , Ligação Proteica , Origem de Replicação , Telófase
18.
Mol Cell Proteomics ; 10(10): M111.009936, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21742798

RESUMO

Endoplasmic reticulum-mitochondrial contacts, known as mitochondria-associated membranes, regulate important cellular functions including calcium signaling, bioenergetics, and apoptosis. Human cytomegalovirus is a medically important herpesvirus whose growth increases energy demand and depends upon continued cell survival. To gain insight into how human cytomegalovirus infection affects endoplasmic reticulum-mitochondrial contacts, we undertook quantitative proteomics of mitochondria-associated membranes using differential stable isotope labeling by amino acids in cell culture strategy and liquid chromatography-tandem MS analysis. This is the first reported quantitative proteomic analyses of a suborganelle during permissive human cytomegalovirus infection. Human fibroblasts were uninfected or human cytomegalovirus-infected for 72 h. Heavy mitochondria-associated membranes were isolated from paired unlabeled, uninfected cells and stable isotope labeling by amino acids in cell culture-labeled, infected cells and analyzed by liquid chromatography-tandem MS analysis. The results were verified by a reverse labeling experiment. Human cytomegalovirus infection dramatically altered endoplasmic reticulum-mitochondrial contacts by late times. Notable is the increased abundance of several fundamental networks in the mitochondria-associated membrane fraction of human cytomegalovirus-infected fibroblasts. Chaperones, including HSP60 and BiP, which is required for human cytomegalovirus assembly, were prominently increased at endoplasmic reticulum-mitochondrial contacts after infection. Minimal translational and translocation machineries were also associated with endoplasmic reticulum-mitochondrial contacts and increased after human cytomegalovirus infection as were glucose regulated protein 75 and the voltage dependent anion channel, which can form an endoplasmic reticulum-mitochondrial calcium signaling complex. Surprisingly, mitochondrial metabolic enzymes and cytosolic glycolytic enzymes were confidently detected in the mitochondria-associated membrane fraction and increased therein after infection. Finally, proapoptotic regulatory proteins, including Bax, cytochrome c, and Opa1, were augmented in endoplasmic reticulum-mitochondrial contacts after infection, suggesting attenuation of proapoptotic signaling by their increased presence therein. Together, these results suggest that human cytomegalovirus infection restructures the proteome of endoplasmic reticulum-mitochondrial contacts to bolster protein translation at these junctions, calcium signaling to mitochondria, cell survival, and bioenergetics and, thereby, allow for enhanced progeny production.


Assuntos
Infecções por Citomegalovirus/metabolismo , Citomegalovirus , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Proteoma/análise , Proteômica/métodos , Cromatografia Líquida , Fibroblastos , Humanos , Marcação por Isótopo , Membranas Mitocondriais/metabolismo , Espectrometria de Massas em Tandem
19.
Neuromuscul Disord ; 33(1): 40-49, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36575103

RESUMO

Accelerated approval based on a likely surrogate endpoint can be life-changing for patients suffering from a rare progressive disease with unmet medical need, as it substantially hastens access to potentially lifesaving therapies. In one such example, antisense morpholinos were approved to treat Duchenne muscular dystrophy (DMD) based on measurement of shortened dystrophin in skeletal muscle biopsies as a surrogate biomarker. New, promising therapeutics for DMD include AAV gene therapy to restore another form of dystrophin termed mini- or microdystrophin. AAV-microdystrophins are currently in clinical trials but have yet to be accepted by regulatory agencies as reasonably likely surrogate endpoints. To evaluate microdystrophin expression as a reasonably likely surrogate endpoint for DMD, this review highlights dystrophin biology in the context of functional and clinical benefit to support the argument that microdystrophin proteins have a high probability of providing clinical benefit based on their rational design. Unlike exon-skipping based strategies, the approach of rational design allows for functional capabilities (i.e. quality) of the protein to be maximized with every patient receiving the same optimized microdystrophin. Therefore, the presence of rationally designed microdystrophin in a muscle biopsy is likely to predict clinical benefit and is consequently a strong candidate for a surrogate endpoint analysis to support accelerated approval.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Humanos , Distrofina/genética , Distrofina/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/patologia , Músculo Esquelético/patologia , Terapia Genética , Biomarcadores/metabolismo
20.
Hum Gene Ther ; 34(9-10): 404-415, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36694468

RESUMO

Duchenne muscular dystrophy (DMD) is a serious, rare genetic disease, affecting primarily boys. It is caused by mutations in the DMD gene and is characterized by progressive muscle degeneration that results in loss of function and early death due to respiratory and/or cardiac failure. Although limited treatment options are available, some for only small subsets of the patient population, DMD remains a disease with large unmet medical needs. The adeno-associated virus (AAV) vector is the leading gene delivery system for addressing genetic neuromuscular diseases. Since the gene encoding the full-length dystrophin protein exceeds the packaging capacity of a single AAV vector, gene replacement therapy based on AAV-delivery of shortened, yet, functional microdystrophin genes has emerged as a promising treatment. This article seeks to explain the rationale for use of the accelerated approval pathway to advance AAV microdystrophin gene therapy for DMD. Specifically, we provide support for the use of microdystrophin expression as a surrogate endpoint that could be used in clinical trials to support accelerated approval.


Assuntos
Distrofia Muscular de Duchenne , Masculino , Humanos , Distrofia Muscular de Duchenne/genética , Músculo Esquelético/metabolismo , Terapia Genética/métodos , Técnicas de Transferência de Genes , Biomarcadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA