Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(2): 105611, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159848

RESUMO

During growth, bacteria remodel and recycle their peptidoglycan (PG). A key family of PG-degrading enzymes is the lytic transglycosylases, which produce anhydromuropeptides, a modification that caps the PG chains and contributes to bacterial virulence. Previously, it was reported that the polar-growing Gram-negative plant pathogen Agrobacterium tumefaciens lacks anhydromuropeptides. Here, we report the identification of an enzyme, MdaA (MurNAc deacetylase A), which specifically removes the acetyl group from anhydromuropeptide chain termini in A. tumefaciens, resolving this apparent anomaly. A. tumefaciens lacking MdaA accumulates canonical anhydromuropeptides, whereas MdaA was able to deacetylate anhydro-N-acetyl muramic acid in purified sacculi that lack this modification. As for other PG deacetylases, MdaA belongs to the CE4 family of carbohydrate esterases but harbors an unusual Cys residue in its active site. MdaA is conserved in other polar-growing bacteria, suggesting a possible link between PG chain terminus deacetylation and polar growth.


Assuntos
Agrobacterium tumefaciens , Proteínas de Bactérias , Agrobacterium tumefaciens/classificação , Agrobacterium tumefaciens/enzimologia , Agrobacterium tumefaciens/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular , Peptidoglicano , Amidoidrolases/genética , Amidoidrolases/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Sequência Conservada/genética , Deleção de Genes
2.
PLoS Genet ; 18(12): e1010274, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36480495

RESUMO

A core component of nearly all bacteria, the cell wall is an ideal target for broad spectrum antibiotics. Many bacteria have evolved strategies to sense and respond to antibiotics targeting cell wall synthesis, especially in the soil where antibiotic-producing bacteria compete with one another. Here we show that cell wall stress caused by both chemical and genetic inhibition of the essential, bifunctional penicillin-binding protein PBP1a prevents microcolony formation and activates the canonical host-invasion two-component system ChvG-ChvI in Agrobacterium tumefaciens. Using RNA-seq, we show that depletion of PBP1a for 6 hours results in a downregulation in transcription of flagellum-dependent motility genes and an upregulation in transcription of type VI secretion and succinoglycan biosynthesis genes, a hallmark of the ChvG-ChvI regulon. Depletion of PBP1a for 16 hours, results in differential expression of many additional genes and may promote a stress response, resembling those of sigma factors in other bacteria. Remarkably, the overproduction of succinoglycan causes cell spreading and deletion of the succinoglycan biosynthesis gene exoA restores microcolony formation. Treatment with cefsulodin phenocopies depletion of PBP1a and we correspondingly find that chvG and chvI mutants are hypersensitive to cefsulodin. This hypersensitivity only occurs in response to treatment with ß-lactam antibiotics, suggesting that the ChvG-ChvI pathway may play a key role in resistance to antibiotics targeting cell wall synthesis. Finally, we provide evidence that ChvG-ChvI likely has a conserved role in conferring resistance to cell wall stress within the Alphaproteobacteria that is independent of the ChvG-ChvI repressor ExoR.


Assuntos
Agrobacterium tumefaciens , Parede Celular , Agrobacterium tumefaciens/genética , Parede Celular/genética , beta-Lactamas/farmacologia
3.
J Bacteriol ; 205(4): e0000523, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36892285

RESUMO

Agrobacterium tumefaciens incites the formation of readily visible macroscopic structures known as crown galls on plant tissues that it infects. Records from biologists as early as the 17th century noted these unusual plant growths and began examining the basis for their formation. These studies eventually led to isolation of the infectious agent, A. tumefaciens, and decades of study revealed the remarkable mechanisms by which A. tumefaciens causes crown gall through stable horizontal genetic transfer to plants. This fundamental discovery generated a barrage of applications in the genetic manipulation of plants that is still under way. As a consequence of the intense study of A. tumefaciens and its role in plant disease, this pathogen was developed as a model for the study of critical processes that are shared by many bacteria, including host perception during pathogenesis, DNA transfer and toxin secretion, bacterial cell-cell communication, plasmid biology, and more recently, asymmetric cell biology and composite genome coordination and evolution. As such, studies of A. tumefaciens have had an outsized impact on diverse areas within microbiology and plant biology that extend far beyond its remarkable agricultural applications. In this review, we attempt to highlight the colorful history of A. tumefaciens as a study system, as well as current areas that are actively demonstrating its value and utility as a model microorganism.


Assuntos
Agrobacterium tumefaciens , Interações entre Hospedeiro e Microrganismos , Agrobacterium tumefaciens/genética , Tumores de Planta/microbiologia , Doenças das Plantas/microbiologia , Plantas/microbiologia , Bactérias , Biologia
4.
Appl Environ Microbiol ; 88(12): e0033322, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35638841

RESUMO

The remarkable ability of Agrobacterium tumefaciens to transfer DNA to plant cells has allowed the generation of important transgenic crops. One challenge of A. tumefaciens-mediated transformation is eliminating the bacteria after plant transformation to prevent detrimental effects to plants and the release of engineered bacteria to the environment. Here, we use a reverse-genetics approach to identify genes involved in ampicillin resistance, with the goal of utilizing these antibiotic-sensitive strains for plant transformations. We show that treating A. tumefaciens C58 with ampicillin led to increased ß-lactamase production, a response dependent on the broad-spectrum ß-lactamase AmpC and its transcription factor, AmpR. Loss of the putative ampD orthologue atu2113 led to constitutive production of AmpC-dependent ß-lactamase activity and ampicillin resistance. Finally, one cell wall remodeling enzyme, MltB3, was necessary for the AmpC-dependent ß-lactamase activity, and its loss elicited ampicillin and carbenicillin sensitivity in the A. tumefaciens C58 and GV3101 strains. Furthermore, GV3101 ΔmltB3 transforms plants with efficiency comparable to that of the wild type but can be cleared with sublethal concentrations of ampicillin. The functional characterization of the genes involved in the inducible ampicillin resistance pathway of A. tumefaciens constitutes a major step forward in efforts to reduce the intrinsic antibiotic resistance of this bacterium. IMPORTANCE Agrobacterium tumefaciens, a significant biotechnological tool for production of transgenic plant lines, is highly resistant to a wide variety of antibiotics, posing challenges for various applications. One challenge is the efficient elimination of A. tumefaciens from transformed plant tissue without using levels of antibiotics that are toxic to the plants. Here, we present the functional characterization of genes involved in ß-lactam resistance in A. tumefaciens. Knowledge about proteins that promote or inhibit ß-lactam resistance will enable the development of strains to improve the efficiency of Agrobacterium-mediated plant genetic transformations. Effective removal of Agrobacterium from transformed plant tissue has the potential to maximize crop yield and food production, improving the outlook for global food security.


Assuntos
Agrobacterium tumefaciens , Resistência beta-Lactâmica , Agrobacterium tumefaciens/fisiologia , Ampicilina/farmacologia , Antibacterianos/farmacologia , Glicosiltransferases , Plantas Geneticamente Modificadas/genética , Resistência beta-Lactâmica/genética , beta-Lactamases/genética
5.
Environ Microbiol ; 23(10): 5823-5836, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33830599

RESUMO

The bacterial cell wall is made of peptidoglycan (PG), a polymer that is essential for maintenance of cell shape and survival. Many bacteria alter their PG chemistry as a strategy to adapt their cell wall to external challenges. Therefore, identifying these environmental cues is important to better understand the interplay between microbes and their habitat. Here, we used the soil bacterium Pseudomonas putida to uncover cell wall modulators from plant extracts and found canavanine (CAN), a non-proteinogenic amino acid. We demonstrated that cell wall chemical editing by CAN is licensed by P. putida BSAR, a broad-spectrum racemase which catalyses production of dl-CAN from l-CAN, which is produced by many legumes. Importantly, d-CAN diffuses to the extracellular milieu thereby having a potential impact on other organisms inhabiting the same niche. Our results show that d-CAN alters dramatically the PG structure of Rhizobiales (e.g., Agrobacterium tumefaciens, Sinorhizobium meliloti), impairing PG crosslinkage and cell division. Using A. tumefaciens, we demonstrated that the detrimental effect of d-CAN is suppressed by a single amino acid substitution in the cell division PG transpeptidase penicillin binding protein 3a. Collectively, this work highlights the role of amino acid racemization in cell wall chemical editing and fitness.


Assuntos
Alphaproteobacteria , Peptidoglicano , Alphaproteobacteria/metabolismo , Proteínas de Bactérias/metabolismo , Canavanina/análise , Canavanina/metabolismo , Parede Celular/metabolismo , Morfogênese , Peptidoglicano/metabolismo
6.
Proc Natl Acad Sci U S A ; 115(29): 7587-7592, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29967162

RESUMO

Many species of Proteobacteria produce acyl-homoserine lactone (AHL) compounds as quorum-sensing (QS) signals for cell density-dependent gene regulation. Most known AHL synthases, LuxI-type enzymes, produce fatty AHLs, and the fatty acid moiety is derived from an acyl-acyl carrier protein (ACP) intermediate in fatty acid biosynthesis. Recently, a class of LuxI homologs has been shown to use CoA-linked aromatic or amino acid substrates for AHL synthesis. By using an informatics approach, we found the CoA class of LuxI homologs exists primarily in α-Proteobacteria. The genome of Prosthecomicrobium hirschii, a dimorphic prosthecate bacterium, possesses a luxI-like AHL synthase gene that we predicted to encode a CoA-utilizing enzyme. We show the P. hirschii LuxI homolog catalyzes synthesis of phenylacetyl-homoserine lactone (PA-HSL). Our experiments show P. hirschii obtains phenylacetate from its environment and uses a CoA ligase to produce the phenylacetyl-CoA substrate for the LuxI homolog. By using an AHL degrading enzyme, we showed that PA-HSL controls aggregation, biofilm formation, and pigment production in P. hirschii These findings advance a limited understanding of the CoA-dependent AHL synthases. We describe how to identify putative members of the class, we describe a signal synthesized by using an environmental aromatic acid, and we identify phenotypes controlled by the aryl-HSL.


Assuntos
4-Butirolactona/análogos & derivados , Alphaproteobacteria/fisiologia , Proteínas de Bactérias , Biofilmes/crescimento & desenvolvimento , Proteínas de Transporte , Percepção de Quorum/fisiologia , Transdução de Sinais/fisiologia , 4-Butirolactona/biossíntese , 4-Butirolactona/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo
7.
Mol Microbiol ; 111(4): 1074-1092, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30693575

RESUMO

The mechanisms that restrict peptidoglycan biosynthesis to the pole during elongation and re-direct peptidoglycan biosynthesis to mid-cell during cell division in polar-growing Alphaproteobacteria are largely unknown. Here, we explore the role of early division proteins of Agrobacterium tumefaciens including three FtsZ homologs, FtsA and FtsW in the transition from polar growth to mid-cell growth and ultimately cell division. Although two of the three FtsZ homologs localize to mid-cell, exhibit GTPase activity and form co-polymers, only one, FtsZAT , is required for cell division. We find that FtsZAT is required not only for constriction and cell separation, but also for initiation of peptidoglycan synthesis at mid-cell and cessation of polar peptidoglycan biosynthesis. Depletion of FtsZAT in A. tumefaciens causes a striking phenotype: cells are extensively branched and accumulate growth active poles through tip splitting events. When cell division is blocked at a later stage by depletion of FtsA or FtsW, polar growth is terminated and ectopic growth poles emerge from mid-cell. Overall, this work suggests that A. tumefaciens FtsZ makes distinct contributions to the regulation of polar growth and cell division.


Assuntos
Agrobacterium tumefaciens/citologia , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Regulação Bacteriana da Expressão Gênica , Agrobacterium tumefaciens/genética , Proteínas de Bactérias/genética , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Peptidoglicano/metabolismo
8.
Nature ; 506(7489): 489-93, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24463524

RESUMO

What mechanisms underlie the transitions responsible for the diverse shapes observed in the living world? Although bacteria exhibit a myriad of morphologies, the mechanisms responsible for the evolution of bacterial cell shape are not understood. We investigated morphological diversity in a group of bacteria that synthesize an appendage-like extension of the cell envelope called the stalk. The location and number of stalks varies among species, as exemplified by three distinct subcellular positions of stalks within a rod-shaped cell body: polar in the genus Caulobacter and subpolar or bilateral in the genus Asticcacaulis. Here we show that a developmental regulator of Caulobacter crescentus, SpmX, is co-opted in the genus Asticcacaulis to specify stalk synthesis either at the subpolar or bilateral positions. We also show that stepwise evolution of a specific region of SpmX led to the gain of a new function and localization of this protein, which drove the sequential transition in stalk positioning. Our results indicate that changes in protein function, co-option and modularity are key elements in the evolution of bacterial morphology. Therefore, similar evolutionary principles of morphological transitions apply to both single-celled prokaryotes and multicellular eukaryotes.


Assuntos
Bactérias/citologia , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Evolução Biológica , Polaridade Celular , Caulobacter crescentus/citologia , Caulobacter crescentus/metabolismo , Caulobacteraceae/citologia , Caulobacteraceae/metabolismo , Membrana Celular/metabolismo , Evolução Molecular , Modelos Biológicos , Dados de Sequência Molecular , Filogenia , Transporte Proteico
9.
Curr Top Microbiol Immunol ; 418: 87-110, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29808336

RESUMO

A great diversity of bacterial cell shapes can be found in nature, suggesting that cell wall biogenesis is regulated both spatially and temporally. Although Agrobacterium tumefaciens has a rod-shaped morphology, the mechanisms underlying cell growth are strikingly different than other well-studied rod-shaped bacteria including Escherichia coli. Technological advances, such as the ability to deplete essential genes and the development of fluorescent D-amino acids, have enabled recent advances in our understanding of cell wall biogenesis during cell elongation and division of A. tumefaciens. In this review, we address how the field has evolved over the years by providing a historical overview of cell elongation and division in rod-shaped bacteria. Next, we summarize the current understanding of cell growth and cell division processes in A. tumefaciens. Finally, we highlight the need for further research to answer key questions related to the regulation of cell wall biogenesis in A. tumefaciens.


Assuntos
Agrobacterium tumefaciens/citologia , Agrobacterium tumefaciens/crescimento & desenvolvimento , Parede Celular/metabolismo , Divisão Celular , Crescimento Celular
10.
Annu Rev Microbiol ; 67: 417-35, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23808335

RESUMO

Asymmetries in cell growth and division occur in eukaryotes and prokaryotes alike. Even seemingly simple and morphologically symmetric cell division processes belie inherent underlying asymmetries in the composition of the resulting daughter cells. We consider the types of asymmetry that arise in various bacterial cell growth and division processes, which include both conditionally activated mechanisms and constitutive, hardwired aspects of bacterial life histories. Although asymmetry disposes some cells to the deleterious effects of aging, it may also benefit populations by efficiently purging accumulated damage and rejuvenating newborn cells. Asymmetries may also generate phenotypic variation required for successful exploitation of variable environments, even when extrinsic changes outpace the capacity of cells to sense and respond to challenges. We propose specific experimental approaches to further develop our understanding of the prevalence and the ultimate importance of asymmetric bacterial growth.


Assuntos
Bactérias/crescimento & desenvolvimento , Divisão Celular , Bactérias/classificação , Bactérias/citologia , Bactérias/genética , Filogenia
11.
Appl Microbiol Biotechnol ; 102(14): 6023-6038, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29730766

RESUMO

A novel whole-cell biosensor was developed to noninvasively and simultaneously monitor the in situ genetic activities of the four quorum sensing (QS) networks in Pseudomonas aeruginosa PAO1, including the las, rhl, pqs, and iqs systems. P. aeruginosa PAO1 is a model bacterium for studies of biofilm and pathogenesis while both processes are closely controlled by the QS systems. This biosensor worked well by selectively monitoring the expression of one representative gene from each network. In the biosensor, the promoter regions of lasI, rhlI, pqsA, and ambB (QS genes) controlled the fluorescent reporter genes of Turbo YFP, mTag BFP2, mNEON Green, and E2-Orange, respectively. The biosensor was successful in monitoring the impact of an important environmental factor, salt stress, on the genetic regulation of QS networks. High salt concentrations (≥ 20 g·L-1) significantly downregulated rhlI, pqsA, and ambB after the biosensor was incubated for 17 h to 18 h at 37 °C, resulting in slow bacterial growth.


Assuntos
Proteínas de Bactérias/genética , Técnicas Biossensoriais/métodos , Pseudomonas aeruginosa/fisiologia , Percepção de Quorum/genética , Biofilmes , Meio Ambiente , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Sais/farmacologia
12.
J Bacteriol ; 199(17)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28630123

RESUMO

Agrobacterium tumefaciens is a rod-shaped bacterium that grows by polar insertion of new peptidoglycan during cell elongation. As the cell cycle progresses, peptidoglycan synthesis at the pole ceases prior to insertion of new peptidoglycan at midcell to enable cell division. The A. tumefaciens homolog of the Caulobacter crescentus polar organelle development protein PopZ has been identified as a growth pole marker and a candidate polar growth-promoting factor. Here, we characterize the function of PopZ in cell growth and division of A. tumefaciens Consistent with previous observations, we observe that PopZ localizes specifically to the growth pole in wild-type cells. Despite the striking localization pattern of PopZ, we find the absence of the protein does not impair polar elongation or cause major changes in the peptidoglycan composition. Instead, we observe an atypical cell length distribution, including minicells, elongated cells, and cells with ectopic poles. Most minicells lack DNA, suggesting a defect in chromosome segregation. Furthermore, the canonical cell division proteins FtsZ and FtsA are misplaced, leading to asymmetric sites of cell constriction. Together, these data suggest that PopZ plays an important role in the regulation of chromosome segregation and cell division.IMPORTANCEA. tumefaciens is a bacterial plant pathogen and a natural genetic engineer. However, very little is known about the spatial and temporal regulation of cell wall biogenesis that leads to polar growth in this bacterium. Understanding the molecular basis of A. tumefaciens growth may allow for the development of innovations to prevent disease or to promote growth during biotechnology applications. Finally, since many closely related plant and animal pathogens exhibit polar growth, discoveries in A. tumefaciens may be broadly applicable for devising antimicrobial strategies.


Assuntos
Agrobacterium tumefaciens/citologia , Divisão Celular Assimétrica , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Segregação de Cromossomos , Agrobacterium tumefaciens/fisiologia , Proteínas de Bactérias/genética , Proteínas de Ciclo Celular/genética , Parede Celular/química , Peptidoglicano/metabolismo
13.
Appl Environ Microbiol ; 83(23)2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28970228

RESUMO

To provide food security, innovative approaches to preventing plant disease are currently being explored. Here, we demonstrate that lytic bacteriophages and phage lysis proteins are effective at triggering lysis of the phytopathogen Agrobacterium tumefaciens Phages Atu_ph02 and Atu_ph03 were isolated from wastewater and induced lysis of C58-derived strains of A. tumefaciens The coinoculation of A. tumefaciens with phages on potato discs limited tumor formation. The genomes of Atu_ph02 and Atu_ph03 are nearly identical and are ∼42% identical to those of T7 supercluster phages. In silico attempts to find a canonical lysis cassette were unsuccessful; however, we found a putative phage peptidoglycan hydrolase (PPH), which contains a C-terminal transmembrane domain. Remarkably, the endogenous expression of pph in the absence of additional phage genes causes a block in cell division and subsequent lysis of A. tumefaciens cells. When the presumed active site of the N-acetylmuramidase domain carries an inactivating mutation, PPH expression causes extensive cell branching due to a block in cell division but does not trigger rapid cell lysis. In contrast, the mutation of positively charged residues at the extreme C terminus of PPH causes more rapid cell lysis. Together, these results suggest that PPH causes a block in cell division and triggers cell lysis through two distinct activities. Finally, the potent killing activity of this single lysis protein can be modulated, suggesting that it could be engineered to be an effective enzybiotic.IMPORTANCE The characterization of bacteriophages such as Atu_ph02 and Atu_ph03, which infect plant pathogens such as Agrobacterium tumefaciens, may be the basis of new biocontrol strategies. First, cocktails of diverse bacteriophages could be used as a preventative measure to limit plant diseases caused by bacteria; a bacterial pathogen is unlikely to simultaneously develop resistances to multiple bacteriophage species. The specificity of bacteriophage treatment for the host is an asset in complex communities, such as in orchards where it would be detrimental to harm the symbiotic bacteria in the environment. Second, bacteriophages are potential sources of enzymes that efficiently lyse bacterial cells. These phage proteins may have a broad specificity, but since proteins do not replicate as phages do, their effect is highly localized, providing an alternative to traditional antibiotic treatments. Thus, studies of lytic bacteriophages that infect A. tumefaciens may provide insights for designing preventative strategies against bacterial pathogens.


Assuntos
Agrobacterium tumefaciens/fisiologia , Bacteriólise , Bacteriófagos/enzimologia , Expressão Gênica , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Proteínas Virais/metabolismo , Agrobacterium tumefaciens/genética , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/genética , Filogenia , Domínios Proteicos , Proteínas Virais/química , Proteínas Virais/genética , Águas Residuárias/virologia
14.
J Bacteriol ; 198(7): 1149-59, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26833409

RESUMO

UNLABELLED: The dimorphic alphaproteobacterium Prosthecomicrobium hirschii has both short-stalked and long-stalked morphotypes. Notably, these morphologies do not arise from transitions in a cell cycle. Instead, the maternal cell morphology is typically reproduced in daughter cells, which results in microcolonies of a single cell type. In this work, we further characterized the short-stalked cells and found that these cells have a Caulobacter-like life cycle in which cell division leads to the generation of two morphologically distinct daughter cells. Using a microfluidic device and total internal reflection fluorescence (TIRF) microscopy, we observed that motile short-stalked cells attach to a surface by means of a polar adhesin. Cells attached at their poles elongate and ultimately release motile daughter cells. Robust biofilm growth occurs in the microfluidic device, enabling the collection of synchronous motile cells and downstream analysis of cell growth and attachment. Analysis of a draft P. hirschii genome sequence indicates the presence of CtrA-dependent cell cycle regulation. This characterization of P. hirschii will enable future studies on the mechanisms underlying complex morphologies and polymorphic cell cycles. IMPORTANCE: Bacterial cell shape plays a critical role in regulating important behaviors, such as attachment to surfaces, motility, predation, and cellular differentiation; however, most studies on these behaviors focus on bacteria with relatively simple morphologies, such as rods and spheres. Notably, complex morphologies abound throughout the bacteria, with striking examples, such as P. hirschii, found within the stalked Alphaproteobacteria. P. hirschii is an outstanding candidate for studies of complex morphology generation and polymorphic cell cycles. Here, the cell cycle and genome of P. hirschii are characterized. This work sets the stage for future studies of the impact of complex cell shapes on bacterial behaviors.


Assuntos
Alphaproteobacteria/citologia , Alphaproteobacteria/fisiologia , Ciclo Celular/fisiologia , Técnicas Bacteriológicas , Biofilmes/crescimento & desenvolvimento
15.
Appl Environ Microbiol ; 82(16): 5015-25, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27287320

RESUMO

UNLABELLED: Mechanistic studies of many processes in Agrobacterium tumefaciens have been hampered by a lack of genetic tools for characterization of essential genes. In this study, we used a Tn7-based method for inducible control of transcription from an engineered site on the chromosome. We demonstrate that this method enables tighter control of inducible promoters than plasmid-based systems and can be used for depletion studies. The method enables the construction of depletion strains to characterize the roles of essential genes in A. tumefaciens Here, we used the strategy to deplete the alphaproteobacterial master regulator CtrA and found that depletion of this essential gene results in dramatic rounding of cells, which become nonviable. IMPORTANCE: Agrobacterium tumefaciens is a bacterial plant pathogen and natural genetic engineer. Thus, studies of essential processes, including cell cycle progression, DNA replication and segregation, cell growth, and division, may provide insights for limiting disease or improving biotechnology applications.


Assuntos
Agrobacterium tumefaciens/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Genes Essenciais , Elementos de DNA Transponíveis , Regiões Promotoras Genéticas
16.
Child Dev ; 87(1): 98-110, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26822446

RESUMO

This study attempted to establish and quantify the connections between parenting, offspring psychosocial adjustment, and the epigenome. The participants, 35 African American young adults (19 females and 16 males; age = 17-29.5 years), represented a subsample of a 3-wave longitudinal 15-year study on the developmental trajectories of low-income urban mother-offspring dyads. Mothers were assessed on their perceptions of maternal stress at each wave. Offspring were assessed on their perceptions of maternal parenting at each wave and on their adaptive and maladaptive behavior at the last wave. Genome-wide DNA methylation in peripheral T lymphocytes at the third wave was assayed using Methyl Binding Domain(MBD) sequencing. Statistically significant associations were identified between the change in offspring's perception of parenting from middle childhood to adulthood and the DNA methylation in offspring's adult genomes. Specifically, the slope of perceived parental rejection across the 3 time points was related to an increase in methylation, or a potential downregulation, of 565 genes thought to be involved in the control of a broad spectrum of biological functions generally related to cellular signaling. A subset of these epigenetic marks, clustered in 23 genes, some of which participate in the development and functioning of the CNS, were in turn associated with psychosocial adjustment as captured by interpersonal relationships and emotional self-evaluation. This appears to be one of the first investigations of the modulating role of the methylome in associations between developmental dynamics of parenting throughout the formative years of child and adolescent development and psychosocial adjustment in adulthood.


Assuntos
Desenvolvimento do Adolescente/fisiologia , Metilação de DNA/genética , Ajustamento Emocional/fisiologia , Epigênese Genética/genética , Comportamento Materno , Relações Mãe-Filho , Poder Familiar , Ajustamento Social , Adolescente , Adulto , Negro ou Afro-Americano , Feminino , Humanos , Estudos Longitudinais , Masculino , Adulto Jovem
17.
Anal Chem ; 87(24): 12032-9, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26496389

RESUMO

In the environment, most bacteria form surface-attached cell communities called biofilms. The attachment of single cells to surfaces involves an initial reversible stage typically mediated by surface structures such as flagella and pili, followed by a permanent adhesion stage usually mediated by polysaccharide adhesives. Here, we determine the absolute and relative timescales and frequencies of reversible and irreversible adhesion of single cells of the bacterium Caulobacter crescentus to a glass surface in a microfluidic device. We used fluorescence microscopy of C. crescentus expressing green fluorescent protein to track the swimming behavior of individual cells prior to adhesion, monitor the cell at the surface, and determine whether the cell reversibly or irreversibly adhered to the surface. A fluorescently labeled lectin that binds specifically to polar polysaccharides, termed holdfast, discriminated irreversible adhesion events from reversible adhesion events where no holdfast formed. In wild-type cells, the holdfast production time for irreversible adhesion events initiated by surface contact (23 s) was 30-times faster than the holdfast production time that occurs through developmental regulation (13 min). Irreversible adhesion events in wild-type cells (3.3 events/min) are 15-times more frequent than in pilus-minus mutant cells (0.2 events/min), indicating the pili are critical structures in the transition from reversible to irreversible surface-stimulated adhesion. In reversible adhesion events, the dwell time of cells at the surface before departing was the same for wild-type cells (12 s) and pilus-minus mutant cells (13 s), suggesting the pili do not play a significant role in reversible adhesion. Moreover, reversible adhesion events in wild-type cells (6.8 events/min) occur twice as frequently as irreversible adhesion events (3.3 events/min), demonstrating that most cells contact the surface multiple times before transitioning from reversible to irreversible adhesion.


Assuntos
Aderência Bacteriana , Caulobacter crescentus/metabolismo , Técnicas Analíticas Microfluídicas , Biofilmes , Caulobacter crescentus/química , Vidro , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência
18.
Proc Natl Acad Sci U S A ; 109(5): 1697-701, 2012 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-22307633

RESUMO

Elongation of many rod-shaped bacteria occurs by peptidoglycan synthesis at discrete foci along the sidewall of the cells. However, within the Rhizobiales, there are many budding bacteria, in which new cell growth is constrained to a specific region. The phylogeny of the Rhizobiales indicates that this mode of zonal growth may be ancestral. We demonstrate that the rod-shaped bacterium Agrobacterium tumefaciens grows unidirectionally from the new pole generated after cell division and has an atypical peptidoglycan composition. Polar growth occurs under all conditions tested, including when cells are attached to a plant root and under conditions that induce virulence. Finally, we show that polar growth also occurs in the closely related bacteria Sinorhizobium meliloti, Brucella abortus, and Ochrobactrum anthropi. We find that unipolar growth is an ancestral and conserved trait among the Rhizobiales, which includes important mutualists and pathogens of plants and animals.


Assuntos
Alphaproteobacteria/crescimento & desenvolvimento , Rhizobiaceae/crescimento & desenvolvimento , Alphaproteobacteria/classificação , Filogenia , Rhizobiaceae/classificação
19.
Mol Microbiol ; 88(3): 486-500, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23517529

RESUMO

Bacterial exopolysaccharide synthesis is a prevalent and indispensible activity in many biological processes, including surface adhesion and biofilm formation. In Caulobacter crescentus, surface attachment and subsequent biofilm growth depend on the ability to synthesize an adhesive polar polysaccharide known as the holdfast. In this work, we show that polar polysaccharide synthesis is a conserved phenomenon among Alphaproteobacterial species closely related to C. crescentus. Among them, mutagenesis of Asticcacaulis biprosthecum showed that disruption of the hfsH gene, which encodes a putative polysaccharide deacetylase, leads to accumulation of holdfast in the culture supernatant. Examination of the hfsH deletion mutant in C. crescentus revealed that this strain synthesizes holdfast; however, like the A. biprosthecum hfsH mutant, the holdfasts are shed into the medium and have decreased adhesiveness and cohesiveness. Site-directed mutagenesis at the predicted catalytic site of C. crescentus HfsH phenocopied the ΔhfsH mutant and abolished the esterase activity of HfsH. In contrast, overexpression of HfsH increased cell adherence without increasing holdfast synthesis. We conclude that the polysaccharide deacetylase activity of HfsH is required for the adhesive and cohesive properties of the holdfast, as well as for the anchoring of the holdfast to the cell envelope.


Assuntos
Adesinas Bacterianas/metabolismo , Amidoidrolases/metabolismo , Aderência Bacteriana , Caulobacter crescentus/metabolismo , Polissacarídeos Bacterianos/metabolismo , Amidoidrolases/genética , Biofilmes , Western Blotting , Caulobacter crescentus/genética , Caulobacter crescentus/crescimento & desenvolvimento , Mapeamento Cromossômico , Biologia Computacional , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Família Multigênica , Mutagênese Sítio-Dirigida , Plasmídeos/genética , Deleção de Sequência
20.
Trends Microbiol ; 32(3): 231-240, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37741788

RESUMO

The bacterial divisome is a complex nanomachine that drives cell division and separation. The essentiality of these processes leads to the assumption that proteins with core roles will be strictly conserved across all bacterial genomes. However, recent studies in diverse proteobacteria have revealed considerable variation in the early divisome compared with Escherichia coli. While some proteins are highly conserved, their specific functions and interacting partners vary. Meanwhile, different subphyla use clade-specific proteins with analogous functions. Thus, instead of focusing on gene conservation, we must also explore how key functions are maintained during early division by diverging protein networks. An enhanced awareness of these complex genetic networks will clarify the physical and evolutionary constraints of bacterial division.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Membrana/metabolismo , Divisão Celular/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA