Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(1): 101, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38157065

RESUMO

A novel application of the Theil-Sen robust regression method for determining the temporal trends in the concentration of heavy metals in UK ambient air over the period 2005-2020 is presented and compared to other regression methods. We have demonstrated improvements over non-robust methods of regression, proving the ability to tease out trends that are small with respect to the variability of the concentration measurement. The method is used to identify, in general, large and significant trends in the concentrations of Ni, As, Pb and V over the period 2005-2020, either across the UK as a whole or at groupings of site classifications in the UK. These trends have been compared to trends in emission data determined in the same manner. Although the results for most metals provide confidence that the UK metal network of monitoring sites is successful in appropriately capturing changes in emissions, a key finding of this work is the disagreement between trends in measured concentrations and emissions for Cu, Mn and Ni, for which we suggest improvements in future network design. The results also indicate that UK emission data for V should be reviewed, as we propose that the rate of reduction of V emissions is likely to have been overestimated.


Assuntos
Poluentes Atmosféricos , Metais Pesados , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , Análise de Regressão , Reino Unido
2.
Environ Res ; 214(Pt 4): 114166, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36027961

RESUMO

Continuous release of pollutants into the environment poses serious threats to environmental sustainability and human health. For trace-level analysis of pollutants, layered double hydroxide (LDH) is an attractive option to impart enhanced sorption capability and sensitivity toward pollutants because of its unique layered structure, tunable interior architecture, high anion-exchange capacities, and high porosity (e.g., Zn/Cr LDH/DABCO-IL, Ni/Al LDH, CS-Ni/Fe LDH, SDS-Fe3O4@SiO2@Mg-Al LDH, Boeh/Mg/Al LDH/pC, and Fe@NiAl LDH). In concert with the well-defined analytical methodologies (e.g., HPLC and GC), the LDH materials can be employed to detect trace-level targets (e.g., as low as âˆ¼ 20 fg/L for phenols) in aqueous environments. This review highlights LDH as a promising material for pre-treatment of a variety of organic and inorganic target pollutants in complex real matrices. Challenges and future requirements for research into LDH-based analytical methods are also discussed.


Assuntos
Poluentes Ambientais , Humanos , Hidróxidos/química , Dióxido de Silício
3.
J Environ Manage ; 301: 113860, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626947

RESUMO

Humans face threats from air pollutants present in both indoor and outdoor environments. The emerging role of plants in remediating the atmospheric environment is now being actively investigated as a possible solution for this problem. Foliar surfaces of plants (e.g., the leaves of cotton) can absorb a variety of airborne pollutants (e.g., formaldehyde, benzene, trimethylamine, and xylene), thereby reducing their concentrations in indoor environments. Recently, theoretical and experimental studies have been conducted to offer better insights into the interactions between plants and the surrounding air. In our research, an overview on the role of plants in reducing air pollution (often referred to as phytoremediation) is provided based on a comprehensive literature survey. The major issues for plant-based research for the reduction of air pollution in both outdoor and indoor environments are discussed in depth along with future challenges. Analysis of the existing data confirms the effectiveness of phytoremediation in terms of the absorption and purification of pollutants (e.g., by the leaves and roots of plants and trees), while being controlled by different variables (e.g., pore characteristics and planting patterns). Although most lab-scale studies have shown that plants can effectively absorb pollutants, it is important for such studies to reflect the real-world conditions, especially with the influence of human activities. Under such conditions, pollutants are to be replenished continually while the plant surface area to ambient atmosphere volume ratio vastly decreases (e.g., relative to lab-based experiments). The replication of such experimental conditions is the key challenge in this field of research. This review is expected to offer valuable insights into the innate ability of various plants in removing diverse pollutants (such as formaldehyde, benzene, and particulate matter) under different environmental settings.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Poluição do Ar em Ambientes Fechados/análise , Humanos , Material Particulado/análise , Plantas
4.
Anal Chem ; 93(36): 12147-12155, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34464087

RESUMO

This Feature highlights the role of metrology, the science of measurement, in maintaining the infrastructure we all rely on for accurate chemical measurements. In particular, the recent change to the definition of the mole, the unit of chemistry, is explained.


Assuntos
Sistema Internacional de Unidades
5.
Environ Res ; 193: 110577, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33309822

RESUMO

A strategy is proposed for the design of wall envelopes to improve unsteady thermal performance in non-air-conditioned buildings and to reduce energy costs in air-conditioned buildings. The thermophysical properties of building materials (e.g., burnt bricks, mud bricks, laterite stone, cinder concrete, and expanded polystyrene) were measured experimentally using a thermal analyzer. A total of 28 combinations for composite walls were designed with expanded polystyrene as an insulation material based on seven criteria and were subjected to 8 different external surface heat transfer coefficients, which were tested for unsteady thermal performance parameters and air-conditioning cost-saving potential. In this paper, unsteady thermal transmittance obtained from admittance method has been employed to compute cost saving potential of air-conditioning for the various wall envelopes. The use of C-H5 design at a 2 m/s wind speed was found to increase the decrement lag of burnt brick, mud brick, laterite stone, and cinder concrete composite wall envelopes by 48.1%, 49.0%, 59.5%, and 47.0%, respectively, relative to the common wall design (C-H1) in non-air-conditioned buildings. The laterite with a C-H5 design offers the highest annual energy cost savings (1.71 $/m2 at 2 m/s), the highest life cycle cost savings (18.32 $/m2 at 2 m/s), and the lowest payback period (4.03 yrs at 2 m/s) in all tested building materials for air-conditioned buildings. The overall results of this study are expected to open new paths to deliver simple design strategies for energy-efficient buildings.


Assuntos
Ar Condicionado , Materiais de Construção , Temperatura Alta
6.
Measurement (Lond) ; 168: 108408, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32901165

RESUMO

Metrology remains a uniquely important endeavour. A sign of its success and robustness as an infra-technology is that it usually goes unnoticed. This means that it is in danger of being under-valued and under-appreciated. The sure-footing that metrology provides to the quality infrastructure will be especially important as the world grapples with the aftereffects of the COVID-19 pandemic, rebuilding global economies and also re-focusing on addressing global grand challenges and exploiting emerging technologies. In this context it is important and timely to re-examine the concept of metrology and how it relates to the quality infrastructure that it serves, but differs to measurement in general. The concept of metrology as 'measuring measurement' is proposed, emphasising the characteristic meta-thought associated with the discipline that distinguishes it from routine measurement.

7.
Anal Chem ; 91(8): 5310-5315, 2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30917653

RESUMO

We have shown that an exchange dilution preparation method reduces the impact of surface adsorption of the target component in high-pressure gas mixtures used for underpinning measurements of amount-of-substance fraction. Gas mixtures are diluted in the same cylinder by releasing an aliquot of the parent mixture. Additional matrix gas is then added to the cylinder. This differs from conventional methods where dilutions are achieved by transferring the parent mixture to another cylinder, which then stores the final reference material. The benefit of this revolutionary approach is that losses due to adsorption to the walls of the cylinder and the valve are reduced as the parent mixture pacifies the surface with only a negligible relative change in amount-of-substance fraction. This development allows for preparation of gas reference materials with unprecedented uncertainties beyond the existing state of the art. It has significant implications for the preparation of high accuracy gas reference materials which underpin a broad range of requirements, particularly in atmospheric monitoring of carbon dioxide, where understanding the adsorption effects is the major obstacle to advancing the measurement science. It has the potential to remove the reliance on proprietary surface pretreatments as the method provides an in situ and consistent alternative.

8.
Environ Monit Assess ; 191(11): 683, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31659500

RESUMO

The monitoring of metals in ambient air has been undertaken for over 40 years on a national basis in the UK. During this period, the UK pollution landscape has continued to evolve in terms of emission sources, and the measurement framework for metals in ambient air, the UK Heavy Metals Monitoring Network, has also been subject to significant configuration changes. Therefore, this work provides a timely review of more recent concentration trends in the context of current emission profiles. Overall, throughout this time period, there has been a significant downward trend in the emissions and consequently, the measured concentrations of most metals in UK ambient air. Ambient concentrations were generally found to be well correlated with emission estimates. Analysis of the sensitivity of measured concentrations to emissions suggests that concentrations have fallen faster than the reduction in emission estimates would have predicted at typical median urban background sites.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Metais Pesados/análise , Poluição do Ar/análise , Reino Unido
9.
Anal Chem ; 90(5): 3490-3495, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29381338

RESUMO

We have shown that the amount fraction of carbon dioxide in a nitrogen or synthetic air matrix stored in cylinders increases as the pressure of the gas mixture reduces, while the amount fraction of methane remains unchanged. Our measurements show the initial amount fraction of carbon dioxide to be lower than the gravimetric value after preparation, which we attribute to the adsorption of a proportion of the molecules to active sites on the internal surface of the cylinder and the valve. As the mixture is consumed, the pressure in the cylinder reduces and the amount fraction of the component is observed to increase. The effect is less pronounced in the presence of water vapor. More dramatic effects have been observed for hydrogen chloride. These findings have significant implications for the preparation of high accuracy gaseous reference materials with unprecedented uncertainties which underpin a broad range of requirements, in particular atmospheric monitoring of high impact greenhouse gases.

10.
J Environ Manage ; 209: 525-538, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29331863

RESUMO

The concentrations of C6-C10 volatile aromatic hydrocarbons (AHCs) in air were measured at an urban air quality monitoring station in Jong-Ro, Seoul, Korea, between 2013 and 2015. Their temporal patterns (e.g., diurnal, intraweek, daily) were assessed individually and collectively as groups of benzene, toluene, ethylbenzene, styrene, and xylene (BTESX); total aliphatic hydrocarbon (TALHC: C2-C12); total aromatic hydrocarbon (TARHC: C6-C10); and total hydrocarbon (THC: C2-C12). The highest mean AHC concentrations over the 3-year study (in ppb (v/v)) were observed for toluene (6.0 ±â€¯4.3), followed by the xylenes (1.5 ±â€¯1.3), ethylbenzene (0.85 ±â€¯0.93), benzene (0.73 ±â€¯0.77), and styrene (0.16 ±â€¯0.30) nL/L. The mean ppbC ((v/v), nL∙atm∙C/nL∙atm) values for BTESX, TALHC, TARHC, and THC were 65.8, 113, 77.7, and 191 ppbC, respectively. For most AHC species (e.g., toluene, styrene, and BTESX), only weak seasonal trends were observed in contrast to temporally varying species like nitric oxide (NO) (e.g., 26.3 ppb (January-February) vs. 8.5 ppb (July-August) during weekdays in 2013). Furthermore, toluene and NO concentrations were much higher (up to a factor 3) on weekdays than on Sunday for most weeks. This might reflect reduced anthropogenic activities on Sunday.


Assuntos
Poluentes Atmosféricos/análise , Hidrocarbonetos Aromáticos/análise , Benzeno , Derivados de Benzeno , Cidades , Monitoramento Ambiental , Hidrocarbonetos , República da Coreia , Tolueno , Xilenos
11.
Environ Monit Assess ; 188(8): 490, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27468848

RESUMO

Concentrations of various size fractions (TSP, PM10, PM2.5, and PM1.0) of particulate matter (PM) were measured at two mountainous sites, Buk Han (BH) and Gwan AK (GA), along with one ground reference site at Gwang Jin (GJ), located in Seoul, South Korea for the 4 years from 2010 to 2013. The daily average concentrations of TSP, PM10, PM2.5, and PM1.0 at BH were 47.9 ± 32.5, 37.0 ± 24.6, 20.6 ± 12.9, and 15.3 ± 9.53 µg m(-3), respectively. These values were slightly larger than those measured at GA while much lower than those measured at the reference site (GJ). Seasonal variations in PM concentrations were consistent across all locations with a relative increase in concentrations observed in spring and winter. Correlation analysis showed clear differences in PM concentrations between the mountainous sites and the reference site. Analysis of these PM concentrations indicated that the distribution of PM in the mountainous locations was affected by a number of manmade sources from nearby locations, including both traffic and industrial emissions.


Assuntos
Poluentes Atmosféricos/análise , Altitude , Monitoramento Ambiental/métodos , Material Particulado/análise , Urbanização , Estações do Ano , Seul
12.
Accredit Qual Assur ; 25(5-6): 387-388, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33603282
13.
Anal Chem ; 86(15): 7819-27, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25057757

RESUMO

Data most commonly used at present to calibrate measurements of mercury vapor concentrations in air come from a relationship known as the "Dumarey equation". It uses a fitting relationship to experimental results obtained nearly 30 years ago. The way these results relate to the international system of units (SI) is not known. This has caused difficulties for the specification and enforcement of limit values for mercury concentrations in air and in emissions to air as part of national or international legislation. Furthermore, there is a significant discrepancy (around 7% at room temperature) between the Dumarey data and data calculated from results of mercury vapor pressure measurements in the presence of only liquid mercury. As an attempt to solve some of these problems, a new measurement procedure is described for SI traceable results of gaseous Hg concentrations at saturation in milliliter samples of air. The aim was to propose a scheme as immune as possible to analytical biases. It was based on isotope dilution (ID) in the liquid phase with the (202)Hg enriched certified reference material ERM-AE640 and measurements of the mercury isotope ratios in ID blends, subsequent to a cold vapor generation step, by inductively coupled plasma mass spectrometry. The process developed involved a combination of interconnected valves and syringes operated by computer controlled pumps and ensured continuity under closed circuit conditions from the air sampling stage onward. Quantitative trapping of the gaseous mercury in the liquid phase was achieved with 11.5 µM KMnO4 in 2% HNO3. Mass concentrations at saturation found from five measurements under room temperature conditions were significantly higher (5.8% on average) than data calculated from the Dumarey equation, but in agreement (-1.2% lower on average) with data based on mercury vapor pressure measurement results. Relative expanded combined uncertainties were estimated following a model based approach. They ranged from 2.2% to 2.8% (k = 2). The volume of air samples was traceable to the kilogram via weighing of water for the calibration of the sampling syringe. Procedural blanks represented on average less than 0.1% of the mass of Hg present in 7.4 cm(3) of air, and correcting for these blanks was not an important source of uncertainty.

14.
Anal Chem ; 86(3): 1887-93, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24410374

RESUMO

We report the preparation and validation of the first fully synthetic gaseous reference standards of CO2 and CH4 in a whole air matrix with an isotopic distribution matching that is in the ambient atmosphere. The mixtures are accurately representative of the ambient atmosphere and were prepared gravimetrically. The isotopic distribution of the CO2 was matched to the abundance in the ambient atmosphere by blending (12)C-enriched CO2 with (13)C-enriched CO2 in order to avoid measurement biases introduced by measurement instrumentation detecting only certain isotopologues. The reference standards developed here have been compared with standards developed by the National Institute of Standards and Technology and standards from the WMO scale. They demonstrate excellent comparability.


Assuntos
Atmosfera/química , Dióxido de Carbono/análise , Dióxido de Carbono/química , Monitoramento Ambiental/normas , Internacionalidade , Metano/análise , Metano/química , Técnicas de Química Sintética , Gravitação , Isótopos , Padrões de Referência , Reprodutibilidade dos Testes , Incerteza
15.
ScientificWorldJournal ; 2014: 236501, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25054167

RESUMO

To assess the robustness of various indoor air quality (IAQ) indices, we explored the possible role of reproducibility-induced variability in the measurements of different pollutants under similar sampling and emissions conditions. Polluted indoor conditions were generated by pan frying fish samples in a closed room. A total of 11 experiments were carried out to measure a list of key variables commonly used to represent indoor air pollution (IAP) indicators such as particulate matter (PM: PM1, PM2.5, PM10, and TSP) and a set of individual volatile organic compounds (VOCs) with some odor markers. The cooking activity conducted as part of our experiments was successful to consistently generate significant pollution levels (mean PM10: 7110 µg m(-3) and mean total VOC (TVOC): 1400 µg m(-3), resp.). Then, relative standard error (RSE) was computed to assess the reproducibility between different IAP paramters measured across the repeated experiments. If the results were evaluated by an arbitrary criterion of 10%, the patterns were divided into two data groups (e.g., <10% for benzene and some aldehydes and >10% for the remainders). Most noticeably, TVOC had the most repeatable results with a reproducibility (RSE) value of 3.2% (n = 11).


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Material Particulado/análise , Culinária/normas , Reprodutibilidade dos Testes , Alimentos Marinhos
16.
Sensors (Basel) ; 14(11): 21676-92, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25407906

RESUMO

Monitoring stationary source emissions for heavy metals generally requires the use of quartz filters to collect samples because of the high temperature and high moisture sampling environment. The documentary standard method sample preparation technique in Europe, EN 14385, uses digestion in hydrofluoric acid and nitric acid (HF/HNO3) followed by complexing with boric acid (H3BO3) prior to analysis. However, the use of this method presents a number of problems, including significant instrumental drift during analysis caused by the matrix components, often leading to instrument breakdown and downtime for repairs, as well as posing significant health and safety risks. The aim of this work was to develop an alternative sample preparation technique for emissions samples on quartz filters. The alternative techniques considered were: (i) acid digestion in a fluoroboric acid (HBF4) and HNO3 mixture and (ii) acid extraction in an aqua regia (AR) mixture (HCl and HNO3). Assessment of the effectiveness of these options included determination of interferences and signal drift, as well as validating the different methods by measurement of matrix certified reference materials (CRMs), and comparing the results obtained from real test samples and sample blanks to determine limits of detection. The results showed that the HBF4/HNO3 mixture provides the most viable alternative to the documentary standard preparation technique.

17.
Environ Sci Process Impacts ; 26(2): 298-304, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38226490

RESUMO

Non-exhaust emissions are becoming of increasing significance with respect to total particulate matter (PM) concentrations in ambient air. Of particular interest is the metal content of this PM since metallic compounds are well known to have toxic effects on human health and the environment. In this study, 'bottom-up' annual tyre wear emission rates were estimated and compared to top-down' emissions declared by the UK; it was calculated that between 14 and 25 tonnes of Zn entered the atmosphere in PM10 in 2020. The emission rates were estimated using a cost-effective, simple but robust validated method for analysis of the metals in tyres using tandem inductively coupled plasma mass spectrometry (ICP-MS/MS) for the first time, involving minimal offline sample preparation. This method was applied to five different tyre makes and brands, all available for sale in the UK, and the uncertainty of each measurement was determined. Traceability was ensured in all methods and novel validation techniques were applied due to lack of available reference materials. Zn was found to be the largest metal component in all tyres with a mass fraction of approximately 10 mg g-1. The mean mass fractions of metals in the tyres decreased in the order of Zn > Al > Fe > Mg > Ti > Pb > Cu > Ba > Ni. Significant differences in composition were found between the five tyres. The relative expanded uncertainties of the metals measurements ranged from 4 to 21%, with elements of higher mass fraction resulting in lower uncertainties. These findings will contribute to assessing current and future air quality challenges and will help to inform regulation surrounding non-exhaust emissions.


Assuntos
Poluentes Atmosféricos , Humanos , Poluentes Atmosféricos/análise , Benchmarking , Espectrometria de Massas em Tandem , Monitoramento Ambiental/métodos , Material Particulado/análise , Metais/análise
18.
Anal Bioanal Chem ; 405(26): 8397-408, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23907690

RESUMO

The combined use of sorbent tubes (ST) and thermal desorption (TD) has become the common practice for the trace-level analysis of gaseous volatile organic compounds (VOCs). In this research, the potential bias in VOC analysis due to the solvent introduced into the system as a liquid standard (LS) is examined in three stages by analyzing LSs of 19 VOCs in methanol solvent against a three-bed ST (Tenax TA, Carbopack B, and Carboxen 1000). In experimental stage 1, LS made at four concentration levels (between 10 and 150 ng µL(-1)) were each analyzed at four injection volumes (1, 2, 5, and 10 µL) based on a vaporization method. In experimental stage 2, calibration was also conducted by direct injection over an extended concentration range at two volumes, 1 and 10 µL. In experimental stage 3, the response factors (RF) of a single analyte mass were compared across the four injection volumes and between two injection methods. These results were analyzed to explore the complex relationship between variables such as LS volume, target/solvent chemical type, sorbent strength, and prepurge condition. There was no change in the ST/TD performance up to 2 µL of LS. However, as the injection volume increased up to 5 µL, a notable shift in RF and retention time occurred (e.g., for benzene and methyl ethyl ketone). At the maximum injection volume (10 µL), a significant reduction in sensitivity is evident for all compounds, e.g., 50 % drops relative to 1 µL injection. As such, the TD performance tends to deteriorate with increasing volume of methanol initially loaded on the ST. Although the dominant fraction of solvent was removed by two prepurge steps, residue caught in the strong sorbent fraction is still found to exert an effect on the subsequent analysis, e.g., delayed retention, sensitivity reduction, or disappearance of certain compounds.

19.
ScientificWorldJournal ; 2013: 763893, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23589708

RESUMO

In an effort to reduce the experimental bias involved in the analysis of gaseous elemental mercury (Hg(o)), the blank response from gold-coated adsorption tubes has been investigated using cold vapor atomic absorption spectrometry (CVAAS). Our study has been compared with our recent investigation on memory effect in a cold vapour atomic fluorescence spectrometry (CVAFS). The pattern of blank responses was quantified after loading different amounts of mercury and after different time intervals of 1, 14, and 45 days. In case of the one day interval, the result of five to six instant blank heating cycles confirmed successful liberation of mercury following the second and third blank heating cycles. The results of 14 or 45 days generally suggest that liberation of excess mercury is affected by both the initial loading amount and the length of storage time prior to analysis. We have demonstrated a possibly effective way to reduce memory effects. Some similarities of these results with those from CVAFS experiment suggests that the blank response is caused by a combination of mercury absorbed within the bulk gold and micro- and nanoparticles liberated during heating and not from coabsorbing interfering gaseous species.


Assuntos
Artefatos , Gases/análise , Ouro/química , Mercúrio/análise , Dióxido de Silício/química , Análise Espectral/instrumentação , Análise Espectral/métodos , Adsorção , Temperatura Baixa , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais
20.
ACS Cent Sci ; 9(4): 600-601, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37122456

RESUMO

This Correspondence provides a brief commentary on a recent ACS Central Science article that evaluated the performance of different laboratories in elemental analysis and suggests that a broader conclusion should be drawn instead, recognizing the benefits of metrology and the international quality infrastructure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA