Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(21)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671841

RESUMO

Low-cost sensors can provide insight on the spatio-temporal variability of air pollution, provided that sufficient efforts are made to ensure data quality. Here, 19 AirBeam particulate matter (PM) sensors were deployed from December 2016 to January 2017 to determine the spatial variability of PM2.5 in Sacramento, California. Prior to, and after, the study, the 19 sensors were deployed and collocated at a regulatory air monitoring site. The sensors demonstrated a high degree of precision during all collocated measurement periods (Pearson R2 = 0.98 - 0.99 across all sensors), with little drift. A sensor-specific correction factor was developed such that each sensor reported a comparable value. Sensors had a moderate degree of correlation with regulatory monitors during the study (R2 = 0.60 - 0.68 at two sites). In a multi-linear regression model, the deviation between sensor and reference measurements of PM2.5 had the highest correlation with dew point and relative humidity. Sensor measurements were used to estimate the PM2.5 spatial variability, finding an average pairwise coefficient of divergence of 0.22 and a range of 0.14 to 0.33, indicating mostly homogeneous distributions. No significant difference in the average sensor PM concentrations between environmental justice (EJ) and non-EJ communities (p value = 0.24) was observed.

2.
J Air Waste Manag Assoc ; 64(9): 1003-12, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25282997

RESUMO

Near-roadway ambient black carbon (BC) and carbon monoxide (CO) concentrations were measured at two schools adjacent to a freeway and at an urban background school 2 km from the freeway to determine the change in concentrations attributable to vehicle emissions after the three-lane expansion of U.S. Highway 95 (US 95) in Las Vegas, Nevada. Between summer 2007 and summer 2008, average weekday small-vehicle volume increased by 40% +/- 2% (standard error). Average weekday large-vehicle volume decreased by 17% +/- 5%, due to a downturn in the economy and an associated decline in goods movement. Average vehicle speed increased from 58 to 69 mph, a 16% +/- 1% increase. The authors compared BC and CO concentrations in summer 2007 with those in summer 2008 to understand what effect the expansion of the freeway may have had on ambient concentrations: BC and CO were measured 17 m north of the freeway sound wall, CO was measured 20 m south of the sound wall, and BC was measured at an urban background site 2 km south of the freeway. Between summer 2007 and summer 2008, median BC decreased at the near-road site by 40% +/- 2% and also decreased at the urban background site by 24% +/- 4%, suggesting that much of the change was due to decreases in emissions throughout Las Vegas, rather than only on US 95. CO concentrations decreased by 14% +/- 2% and 10% +/- 3% at the two near-road sites. The decrease in BC concentrations after the expansion is likely due to the decrease in medium- and heavy-duty-vehicle traffic resulting from the economic recession. The decrease in CO concentrations may be a result of improved traffic flow, despite the increase in light-duty-vehicle traffic. Implications: Monitoring of BC and CO at near-road locations in Las Vegas demonstrated the impacts of changes in traffic volume and vehicle speed on near-road concentrations. However, urban-scale declines in concentrations were larger than near-road changes due to the impacts of the economic recession that occurred contemporaneously with the freeway expansion.


Assuntos
Poluentes Atmosféricos/química , Instituições Acadêmicas , Emissões de Veículos , Monóxido de Carbono/química , Nevada , Fuligem/química , Fatores de Tempo
3.
J Air Waste Manag Assoc ; 63(12): 1422-33, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24558705

RESUMO

Understanding the organic matter/organic carbon (OM/OC) ratio in ambient particulate matter (PM) is critical to achieve mass closure in routine PM measurements, to assess the sources of and the degree of chemical processing organic aerosol particles have undergone, and to relate ambient pollutant concentrations to health effects. Of particular interest is how the OM/OC ratio varies in the urban environment, where strong spatial and temporal gradients in source emissions are common. We provide results of near-roadway high-time-resolution PM1 OM concentration and OM/OC ratio observations during January 2008 at Fyfe Elementary School in Las Vegas, NV, 18 m from the U.S. 95 freeway soundwall, measured with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS). The average OM/OC ratio was 1.54 (+/- 0.20 standard deviation), typical of environments with a low amount of secondary aerosol formation. The 2-min average OM/OC ratios varied between 1.17 and 2.67, and daily average OM/OC ratios varied between 1.44 and 1.73. The ratios were highest during periods of low OM concentrations and generally low during periods of high OM concentrations. OM/OC ratios were low (1.52 +/- 0.14, on average) during the morning rush hour (average OM = 2.4 microg/m3), when vehicular emissions dominate this near-road measurement site. The ratios were slightly lower (1.46 +/- 0.10) in the evening (average OM = 6.3 microg/m3), when a combination of vehicular and fresh residential biomass burning emissions was typically present during times with temperature inversions. The hourly averaged OM/OC ratio peaked at 1.66 at midday. OM concentrations were similar regardless of whether the monitoring site was downwind or upwind of the adjacent freeway throughout the day, though they were higher during stagnant conditions (wind speed < 0.5 m/sec). The OM/OC ratio generally varied more with time of day than with wind direction and speed.


Assuntos
Compostos Orgânicos/análise , Material Particulado/análise , Emissões de Veículos/análise , Aerossóis , Cidades , Tempo (Meteorologia)
4.
J Air Waste Manag Assoc ; 71(2): 231-246, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32091969

RESUMO

Air pollutant concentrations are often higher near major roadways than in the surrounding environments owing to emissions from on-road mobile sources. In this study, we quantified the gradient in black carbon (BC) and air toxics concentrations from the I-70 freeway in the Elyria-Swansea environmental justice neighborhood in Denver, Colorado, during three measurement campaigns in 2017-2018. The average hourly upwind-downwind gradient of BC concentrations from the roadway was 500-800 ng/m3, equal to an increment of approximately 30-80% above local background levels within 180 m of the freeway. When integrated over all wind directions, the gradients were smaller, approximately 150-300 ng/m3 (~11-18%) over the course of nearly four months of measurements. No statistically significant gradient in air toxics (e.g., benzene, formaldehyde, etc.) was found, likely because the uncertainties in the mean concentrations were larger than the magnitude of the gradient (<25%). This finding is in contrast to some earlier studies in which small gradients of benzene and other VOCs were found. We estimate that sample sizes of at least 100 individual measurements would have been required to estimate mean concentrations with sufficient certainty to quantify gradients on the order of ±10% uncertainty. These gradient estimates are smaller than those found in previous studies over the past two decades; more stringent emissions standards, the local fleet age distribution, and/or the steady turnover of the vehicle fleet may be reducing the overall impact of roadway emissions on near-road communities. Implications: Gradients of near-road pollution may be declining in the near-road environment as tailpipe emissions from the vehicle fleet continue to decrease. Near-road concentration gradients of mobile source air toxics, including benzene, 1,3-butadiene, and ethylbenzene, will require higher sample sizes to quantify as emissions continue to decline.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Benzeno , Monitoramento Ambiental , Fuligem , Emissões de Veículos/análise
5.
Artigo em Inglês | MEDLINE | ID: mdl-32046291

RESUMO

Ambient air monitoring and phone survey data were collected in three environmental justice (EJ) and three non-EJ communities in Sacramento County during winter 2016-2017 to understand the differences in air toxics and in wood smoke pollution among communities. Concentrations of six hazardous air pollutants (HAPs) and black carbon (BC) from fossil fuel (BCff) were significantly higher at EJ communities versus non-EJ communities. BC from wood burning (BCwb) was significantly higher at non-EJ communities. Correlation analysis indicated that the six HAPs were predominantly from fossil fuel combustion sources, not from wood burning. The HAPs were moderately variable across sites (coefficient of divergence (COD) range of 0.07 for carbon tetrachloride to 0.28 for m- and p-xylenes), while BCff and BCwb were highly variable (COD values of 0.46 and 0.50). The BCwb was well correlated with levoglucosan (R2 of 0.68 to 0.95), indicating that BCwb was a robust indicator for wood burning. At the two permanent monitoring sites, wood burning comprised 29-39% of the fine particulate matter (PM2.5) on nights when PM2.5 concentrations were forecasted to be high. Phone survey data were consistent with study measurements; the only significant difference in the survey results among communities were that non-EJ residents burn with indoor devices more often than EJ residents.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Combustíveis Fósseis/análise , Material Particulado/análise , Fumaça/análise , Madeira , Poluição do Ar/análise , California , Monitoramento Ambiental/métodos , Calefação/métodos , Calefação/estatística & dados numéricos , Humanos , Estações do Ano , Inquéritos e Questionários
6.
Artigo em Inglês | MEDLINE | ID: mdl-31083326

RESUMO

We examined two near-road monitoring sites where the daily PM2.5 readings were among the highest of any near-road monitoring location in the U.S. during 2014-2016: Denver, Colorado, in February 2014 and Indianapolis, Indiana, in November 2016. At the Denver site, which had the highest measured U.S. near-road 24-hr PM2.5 concentrations in 2014, concentrations exceeded the daily National Ambient Air Quality Standards (NAAQS) on three days during one week in 2014; the Indianapolis site had the second-highest number of daily exceedances of any near-road site in 2016 and the highest 3-year average PM2.5 of any near-road site during 2014-2016. Both sites had hourly pollutant, meteorological, and traffic data available, making them ideal for case studies. For both locations, we compared air pollution observations at the near-road site to observations at other sites in the urban area to calculate the near-road PM2.5 "increment" and evaluated the effects of changes in meteorology and traffic. The Denver near-road site consistently had the highest PM2.5 values in the Denver area, and was typically highest when winds were near-downwind, rather than directly downwind, to the freeway. Complex Denver site conditions (near-road buildings and roadway alignment) likely contributed to higher PM2.5 concentrations. The increment at Indianapolis was also highest under near-downwind, rather than directly downwind, conditions. At both sites, while the near-road site often had higher PM2.5 concentrations than nearby sites, there was no clear correlation between traffic conditions (vehicle speed, fleet mix) and the high PM2.5 concentrations.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Colorado , Indiana , Estações do Ano
7.
J Air Waste Manag Assoc ; 57(5): 606-19, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17518227

RESUMO

Speciated fine particulate matter (PM2.5) data collected as part of the Speciation Trends Network at four sites in the Midwest (Detroit, MI; Cincinnati, OH; Indianapolis, IN; and Northbrook, IL) and as part of the Interagency Monitoring of Protected Visual Environments program at the rural Bondville, IL, site were analyzed to understand sources contributing to organic carbon (OC) and PM2.5 mass. Positive matrix factorization (PMF) was applied to available data collected from January 2002 through March 2005, and seven to nine factors were identified at each site. Common factors at all of the sites included mobile (gasoline)/secondary organic aerosols with high OC, diesel with a high elemental carbon/OC ratio (only at the urban sites), secondary sulfate, secondary nitrate, soil, and biomass burning. Identified industrial factors included copper smelting (Northbrook, Indianapolis, and Bondville), steel/manufacturing with iron (Northbrook), industrial zinc (Northbrook, Cincinnati, Indianapolis, and Detroit), metal plating with chromium and nickel (Detroit, Indianapolis, and Bondville), mixed industrial with copper and iron (Cincinnati), and limestone with calcium and iron (Bondville). PMF results, on average, accounted for 96% of the measured PM2.5 mass at each site; residuals were consistently within tolerance (+/-3), and goodness-of-fit (Q) was acceptable. Potential source contribution function analysis helped identify regional and local impacts of the identified source types. Secondary sulfate and soil factors showed regional characteristics at each site, whereas industrial sources typically appeared to be locally influenced. These regional factors contributed approximately one third of the total PM2.5 mass, on average, whereas local mobile and industrial sources contributed to the remaining mass. Mobile sources were a major contributor (55-76% at the urban sites) to OC mass, generally with at least twice as much mass from nondiesel sources as from diesel. Regional OC associated with secondary sulfate and soil was generally low.


Assuntos
Poluentes Atmosféricos/análise , Carbono/análise , Material Particulado/análise , Monitoramento Ambiental , Filtração , Meio-Oeste dos Estados Unidos , Tamanho da Partícula , Estados Unidos , United States Environmental Protection Agency
8.
J Air Waste Manag Assoc ; 57(6): 741-52, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17608008

RESUMO

Speciated particulate matter (PM)2.5 data collected as part of the Interagency Monitoring of Protected Visual Environments (IMPROVE) program in Phoenix, AZ, from April 2001 through October 2003 were analyzed using the multivariate receptor model, positive matrix factorization (PMF). Over 250 samples and 24 species were used, including the organic carbon and elemental carbon analytical temperature fractions from the thermal optical reflectance method. A two-step approach was used. First, the species excluding the carbon fractions were used, and initially eight factors were identified; non-soil potassium was calculated and included to better refine the burning factor. Next, the mass associated with the burning factor was removed, and the data set rerun with the carbon fractions. Results were very similar (i.e., within a few percent), but this step enabled a separation of the mobile factor into gasoline and diesel vehicle emissions. The identified factors were burning (on average 2% of the mass), secondary transport (7%), regional power generation (13%), dust (25%), nitrate (9%), industrial As/Pb/Se (2%), Cu/Ni/V (7%), diesel (9%), and general mobile (26%). The overall contribution from mobile sources also increased, as some mass (OC and nitrate) from the nitrate and regional power generation factors were apportioned with the mobile factors. This approach allowed better apportionment of carbon as well as total mass. Additionally, the use of multiple supporting analyses, including air mass trajectories, activity trends, and emission inventory information, helped increase confidence in factor identification.


Assuntos
Poluentes Atmosféricos/análise , Material Particulado/análise , Arizona , Arsênio/análise , Monitoramento Ambiental/estatística & dados numéricos , Análise Fatorial , Gasolina , Metalurgia , Metais/análise , Análise Multivariada , Nitratos/análise , Centrais Elétricas , Solo , Emissões de Veículos
9.
J Air Waste Manag Assoc ; 67(11): 1192-1204, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28010175

RESUMO

As part of two separate studies aimed to characterize ambient pollutant concentrations at schools in urban areas, we compare black carbon and particle count measurements at Adcock Elementary in Las Vegas, NV (April-June 2013), and Hunter High School in the West Valley City area of greater Salt Lake City, UT (February 2012). Both schools are in urban environments, but Adcock Elementary is next to the U.S. 95 freeway. Black carbon (BC) concentrations were 13% higher at Adcock compared to Hunter, while particle count concentrations were 60% higher. When wind speeds were low-less than 2 m/sec-both BC and particle count concentrations were significantly higher at Adcock, while concentrations at Hunter did not have as strong a variation with wind speed. When wind speeds were less than 2 m/sec, emissions from the adjacent freeway greatly affected concentrations at Adcock, regardless of wind direction. At both sites, BC and particle count concentrations peaked in the morning during commute hours. At Adcock, particle count also peaked during midday or early afternoon, when BC was low and conditions were conducive to new particle formation. While this midday peak occurred at Adcock on roughly 45% of the measured days, it occurred on only about 25% of the days at Hunter, since conditions for particle formation (higher solar radiation, lower wind speeds, lower relative humidity) were more conducive at Adcock. Thus, children attending these schools are likely to be exposed to pollution peaks during school drop-off in the morning, when BC and particle count concentrations peak, and often again during lunchtime recess when particle count peaks again. IMPLICATIONS: Particle count concentrations at two schools were shown to typically be independent of BC or other pollutants. At a school in close proximity to a major freeway, particle count concentrations were high during the midday and when wind speeds were low, regardless of wind direction, showing a large area of effect from roadway emissions even when the school was not downwind of the roadway. At the second school, which sits in an urban neighborhood away from freeways, high particle counts occurred even though solar radiation was low during wintertime conditions, meaning that exposure to high particle counts can occur throughout the year.


Assuntos
Poluentes Atmosféricos/análise , Material Particulado/análise , Instituições Acadêmicas , Fuligem/análise , Emissões de Veículos/análise , Carbono/análise , Monitoramento Ambiental , Nevada , Tamanho da Partícula , Utah , Vento
10.
J Air Waste Manag Assoc ; 56(12): 1679-93, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17195487

RESUMO

Air quality data collected in the California Regional PM10/ PM(2.5) Air Quality Study (CRPAQS) are analyzed to qualitatively assess the processes affecting secondary aerosol formation in the San Joaquin Valley (SJV). This region experiences some of the highest fine particulate matter (PM(2.5)) mass concentrations in California (< or = 188 microg/m3 24-hr average), and secondary aerosol components (as a group) frequently constitute over half of the fine aerosol mass in winter. The analyses are based on 15 days of high-frequency filter and canister measurements and several months of wintertime continuous gas and aerosol measurements. The phase-partitioning of nitrogen oxide (NO(x))-related nitrogen species and carbonaceous species shows that concentrations of gaseous precursor species are far more abundant than measured secondary aerosol nitrate or estimated secondary organic aerosols. Comparisons of ammonia and nitric acid concentrations indicate that ammonium nitrate formation is limited by the availability of nitric acid rather than ammonia. Time-resolved aerosol nitrate data collected at the surface and on a 90-m tower suggest that both the daytime and nighttime nitric acid formation pathways are active, and entrainment of aerosol nitrate formed aloft at night may explain the spatial homogeneity of nitrate in the SJV. NO(x) and volatile organic compound (VOC) emissions plus background O3 levels are expected to determine NO(x) oxidation and nitric acid production rates, which currently control the ammonium nitrate levels in the SJV. Secondary organic aerosol formation is significant in winter, especially in the Fresno urban area. Formation of secondary organic aerosol is more likely limited by the rate of VOC oxidation than the availability of VOC precursors in winter.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Material Particulado/análise , Amônia/análise , California , Monitoramento Ambiental , Humanos , Luminescência , Modelos Teóricos , Nitratos/análise , Ácido Nítrico/análise , Oxidantes Fotoquímicos , Fotoquímica , Estações do Ano , Termodinâmica , Fatores de Tempo , Volatilização
11.
J Air Waste Manag Assoc ; 56(9): 1267-77, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17004682

RESUMO

Air quality monitoring was conducted at a rural site with a tower in the middle of California's San Joaquin Valley (SJV) and at elevated sites in the foothills and mountains surrounding the SJV for the California Regional PM10/ PM2.5 Air Quality Study. Measurements at the surface and n a tower at 90 m were collected in Angiola, CA, from December 2000 through February 2001 and included hourly black carbon (BC), particle counts from optical particle counters, nitric oxide, ozone, temperature, relative humidity, wind speed, and direction. Boundary site measurements were made primarily using 24-hr integrated particulate matter (PM) samples. These measurements were used to understand the vertical variations of PM and PM precursors, the effect of stratification in the winter on concentrations and chemistry aloft and at the surface, and the impact of aloft-versus-surface transport on PM concentrations. Vertical variations of concentrations differed among individual species. The stratification may be important to atmospheric chemistry processes, particularly nighttime nitrate formation aloft, because NO2 appeared to be oxidized by ozone in the stratified aloft layer. Additionally, increases in accumulation-mode particle concentrations in the aloft layer during a fine PM (PM2.5) episode corresponded with increases in aloft nitrate, demonstrating the likelihood of an aloft nighttime nitrate formation mechanism. Evidence of local transport at the surface and regional transport aloft was found; transport processes also varied among the species. The distribution of BC appeared to be regional, and BC was often uniformly mixed vertically. Overall, the combination of time-resolved tower and surface measurements provided important insight into PM stratification, formation, and transport.


Assuntos
Poluentes Atmosféricos/análise , Carbono/análise , Poeira/análise , Óxido Nítrico/análise , Ozônio/análise , California , Monitoramento Ambiental , Tamanho da Partícula , Estações do Ano
12.
Sci Total Environ ; 518-519: 626-35, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25776202

RESUMO

The new version of EPA's positive matrix factorization (EPA PMF) software, 5.0, includes three error estimation (EE) methods for analyzing factor analytic solutions: classical bootstrap (BS), displacement of factor elements (DISP), and bootstrap enhanced by displacement (BS-DISP). These methods capture the uncertainty of PMF analyses due to random errors and rotational ambiguity. To demonstrate the utility of the EE methods, results are presented for three data sets: (1) speciated PM2.5 data from a chemical speciation network (CSN) site in Sacramento, California (2003-2009); (2) trace metal, ammonia, and other species in water quality samples taken at an inline storage system (ISS) in Milwaukee, Wisconsin (2006); and (3) an organic aerosol data set from high-resolution aerosol mass spectrometer (HR-AMS) measurements in Las Vegas, Nevada (January 2008). We present an interpretation of EE diagnostics for these data sets, results from sensitivity tests of EE diagnostics using additional and fewer factors, and recommendations for reporting PMF results. BS-DISP and BS are found useful in understanding the uncertainty of factor profiles; they also suggest if the data are over-fitted by specifying too many factors. DISP diagnostics were consistently robust, indicating its use for understanding rotational uncertainty and as a first step in assessing a solution's viability. The uncertainty of each factor's identifying species is shown to be a useful gauge for evaluating multiple solutions, e.g., with a different number of factors.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental/métodos , Material Particulado/análise , Poluição do Ar/análise , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA