Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Ecol ; 19(14): 2916-32, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20579287

RESUMO

Although polyploidy is widespread, its significance to the generation of biodiversity remains unclear. Many polyploids have been derived recurrently. For a particular polyploid, gene-flow between the products of independent origin is typical where they come into contact. Here, we use AFLP DNA-fingerprinting and chloroplast DNA sequences to demonstrate parallel polyploid speciation within both of the ferns Asplenium cimmeriorum and A. gracillimum. Both of these taxa comprise at least two allopolyploids, recurrently derived from the same progenitor pair. Each of these allopolyploids remain genetically distinguishable even with extensive sympatry, and could therefore be considered distinct species. To our knowledge, parallel speciation on this scale amongst recurrent polyploids has not been previously reported. With their parallel origins, these 'evolutionary replicates' provide an unrivalled opportunity to investigate how the reproductive barriers and ecological differentiation necessary for speciation arise following polyploidy.


Assuntos
Gleiquênias/genética , Pool Gênico , Especiação Genética , Poliploidia , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Impressões Digitais de DNA , DNA de Cloroplastos/genética , DNA de Plantas/genética , Gleiquênias/classificação , Fluxo Gênico , Haplótipos , Análise de Sequência de DNA
2.
PLoS One ; 14(5): e0216903, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31107899

RESUMO

Hybridization is common in many ferns and has been a significant factor in fern evolution and speciation. However, hybrids are rare between the approximately 30 species of Dicksonia tree ferns world-wide, and none are well documented. In this study we examine the relationship of a newly-discovered Dicksonia tree fern from Whirinaki, New Zealand, which does not fit the current taxonomy of the three species currently recognized in New Zealand. Our microsatellite genotyping and ddRAD-seq data indicate these plants are F1 hybrids that have formed multiple times between D. fibrosa and D. lanata subsp. lanata. The Whirinaki plants have intermediate morphology between D. fibrosa and D. lanata subsp. lanata and their malformed spores are consistent with a hybrid origin. The Whirinaki plants-Dicksonia fibrosa × D. lanata subsp. lanata-are an example of hybridization between distantly related fern lineages, with the two parent species estimated to have diverged 55-25 mya. Our chloroplast sequencing indicates asymmetric chloroplast inheritance in the Whirinaki morphology with D. lanata subsp. lanata always contributing the chloroplast genome.


Assuntos
Cloroplastos/genética , Gleiquênias/genética , Genoma de Cloroplastos , Hibridização Genética , Nova Zelândia
3.
Mol Phylogenet Evol ; 49(1): 240-8, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18640280

RESUMO

Recent generalisations about polyploidy in plants have been largely based on studies of angiosperms. A compelling group to compare with angiosperms is ferns, because of their high polyploidy. The bi-parental inheritance of nuclear DNA sequence markers makes them advantageous for investigating polyploid complexes, but few such markers have been available for ferns. We have used DNA sequences from the low-copy nuclear LFY locus to study an Asplenium polyploid complex. The New Zealand species of this Austral group comprise seven tetraploids and eight octoploids. LFY sequences indicate that allopolyploidy is much more predominant than previously thought, being implicated in the origins of seven of the octoploids. One of the tetraploids has had a central role, being a progenitor for five of the octoploids. All of the octoploids appear to have relatively recent origins, with the dynamic environmental conditions of the Pleistocene possibly playing a role in their formation and/or establishment.


Assuntos
Gleiquênias/classificação , Gleiquênias/genética , Filogenia , Poliploidia , Algoritmos , Sequência de Bases , Clonagem Molecular , DNA de Plantas/genética , Evolução Molecular , Genes de Plantas , Funções Verossimilhança , Dados de Sequência Molecular , Nova Zelândia , Proteínas de Plantas/genética , Especificidade da Espécie
4.
Mol Ecol ; 16(21): 4536-49, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17877716

RESUMO

In the Southern Hemisphere there has been little phylogeographical investigation of forest refugia sites during the last glacial. Hooker's spleenwort, Asplenium hookerianum, is a fern that is found throughout New Zealand. It is strongly associated with forest and is a proxy for the survival of woody vegetation during the last glacial maximum. DNA sequence data from the chloroplast trnL-trnF locus were obtained from 242 samples, including c. 10 individuals from each of 21 focal populations. Most populations contained multiple, and in many cases unique, haplotypes, including those neighbouring formerly glaciated areas, while the predominant inference from nested clade analysis was restricted gene flow with isolation by distance. These results suggest that A. hookerianum survived the last glacial maximum in widespread populations of sufficient size to retain the observed phylogeography, and therefore that the sheltering woody vegetation must have been similarly abundant. This is consistent with palynological interpretations for the survival in New Zealand of thermophilous forest species at considerably smaller distances from the ice sheets than recorded for the Northern Hemisphere. Eastern and central North Island populations of A. hookerianum were characterized by a different subset of haplotypes to populations from the remainder of the country. A similar east-west phylogeographical pattern has been detected in a diverse array of taxa, and has previously been attributed to recurrent vulcanism in the central North Island.


Assuntos
Gleiquênias/classificação , Incêndios , Geografia , Camada de Gelo , Filogenia , Erupções Vulcânicas , DNA de Cloroplastos/química , Gleiquênias/genética , Variação Genética , Haplótipos , Nova Zelândia , Análise de Sequência de DNA , Árvores
5.
Am J Bot ; 92(9): 1559-64, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21646173

RESUMO

Species status cannot be adequately determined when partitions are based on only a single morphological character. For instance, the sympatry of plants with broad and narrow pinnules in the fern Asplenium hookerianum sensu lato from New Zealand creates the impression that two entities are present. The narrow-pinnuled plants are sometimes segregated as a distinct species, A. colensoi. However, this variation in pinnule morphology could equally be infraspecific, and only additional data can resolve this uncertainty. Analyses using AFLP DNA-fingerprinting and DNA sequencing of the chloroplast trnL-trnF region indicate that genetic variation in A. hookerianum sensu lato is not concordant with pinnule morphology. Consequently, the recognition of A. colensoi is not supported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA