Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(33): 20070-20076, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747562

RESUMO

The genetic characterization of a common phenotype for an entire population reveals both the causes of that phenotype for that place and the power of family-based, population-wide genomic analysis for gene and mutation discovery. We characterized the genetics of hearing loss throughout the Palestinian population, enrolling 2,198 participants from 491 families from all parts of the West Bank and Gaza. In Palestinian families with no prior history of hearing loss, we estimate that 56% of hearing loss is genetic and 44% is not genetic. For the great majority (87%) of families with inherited hearing loss, panel-based genomic DNA sequencing, followed by segregation analysis of large kindreds and transcriptional analysis of participant RNA, enabled identification of the causal genes and mutations, including at distant noncoding sites. Genetic heterogeneity of hearing loss was striking with respect to both genes and alleles: The 337 solved families harbored 143 different mutations in 48 different genes. For one in four solved families, a transcription-altering mutation was the responsible allele. Many of these mutations were cryptic, either exonic alterations of splice enhancers or silencers or deeply intronic events. Experimentally calibrated in silico analysis of transcriptional effects yielded inferences of high confidence for effects on splicing even of mutations in genes not expressed in accessible tissue. Most (58%) of all hearing loss in the population was attributable to consanguinity. Given the ongoing decline in consanguineous marriage, inherited hearing loss will likely be much rarer in the next generation.


Assuntos
Perda Auditiva/congênito , Perda Auditiva/genética , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Consanguinidade , Éxons , Feminino , Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Oriente Médio , Mutação , Linhagem , Adulto Jovem
2.
Ann Hum Genet ; 86(1): 1-13, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34374074

RESUMO

The study was conducted between 2018 and 2020. From a cohort of 113 hearing impaired (HI), five non-DFNB12 probands identified with heterozygous CDH23 variants were subjected to exome analysis. This resolved the etiology of hearing loss (HL) in four South Indian assortative mating families. Six variants, including three novel ones, were identified in four genes: PNPT1 p.(Ala46Gly) and p.(Asn540Ser), MYO15A p.(Leu1485Pro) and p.(Tyr1891Ter), PTPRQ p.(Gln1336Ter), and SLC12A2 p.(Pro988Ser). Compound heterozygous PNPT1 variants were associated with DFNB70 causing prelingual profound sensorineural hearing loss (SNHL), vestibular dysfunction, and unilateral progressive vision loss in one family. In the second family, MYO15A variants in the myosin motor domain, including a novel variant, causing DFNB3, were found to be associated with prelingual profound SNHL. A novel PTPRQ variant was associated with postlingual progressive sensorineural/mixed HL and vestibular dysfunction in the third family with DFNB84A. In the fourth family, the SLC12A2 novel variant was found to segregate with severe-to-profound HL causing DFNA78, across three generations. Our results suggest a high level of allelic, genotypic, and phenotypic heterogeneity of HL in these families. This study is the first to report the association of PNPT1, PTPRQ, and SLC12A2 variants with HL in the Indian population.


Assuntos
Perda Auditiva Neurossensorial , Perda Auditiva , Exorribonucleases/genética , Audição , Perda Auditiva Neurossensorial/genética , Humanos , Índia , Mutação , Miosinas/genética , Linhagem , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Membro 2 da Família 12 de Carreador de Soluto/genética
3.
Hum Genet ; 141(3-4): 431-444, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35278131

RESUMO

Sequencing exomes/genomes have been successful for identifying recessive genes; however, discovery of dominant genes including deafness genes (DFNA) remains challenging. We report a new DFNA gene, ATP11A, in a Newfoundland family with a variable form of bilateral sensorineural hearing loss (SNHL). Genome-wide SNP genotyping linked SNHL to DFNA33 (LOD = 4.77), a locus on 13q34 previously mapped in a German family with variable SNHL. Whole-genome sequencing identified 51 unremarkable positional variants on 13q34. Continuous clinical ascertainment identified several key recombination events and reduced the disease interval to 769 kb, excluding all but one variant. ATP11A (NC_000013.11: chr13:113534963G>A) is a novel variant predicted to be a cryptic donor splice site. RNA studies verified in silico predictions, revealing the retention of 153 bp of intron in the 3' UTR of several ATP11A isoforms. Two unresolved families from Israel were subsequently identified with a similar, variable form of SNHL and a novel duplication (NM_032189.3:c.3322_3327+2dupGTCCAGGT) in exon 28 of ATP11A extended exon 28 by 8 bp, leading to a frameshift and premature stop codon (p.Asn1110Valfs43Ter). ATP11A is a type of P4-ATPase that transports (flip) phospholipids from the outer to inner leaflet of cell membranes to maintain asymmetry. Haploinsufficiency of ATP11A, the phospholipid flippase that specially transports phosphatidylserine (PS) and phosphatidylethanolamine (PE), could leave cells with PS/PE at the extracellular side vulnerable to phagocytic degradation. Given that surface PS can be pharmaceutically targeted, hearing loss due to ATP11A could potentially be treated. It is also likely that ATP11A is the gene underlying DFNA33.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Humanos , Regiões 3' não Traduzidas , Transportadores de Cassetes de Ligação de ATP/genética , Surdez/genética , Perda Auditiva/genética , Perda Auditiva Neurossensorial/genética , Mutação , Linhagem , Fosfolipídeos/metabolismo , Sítios de Splice de RNA
4.
Clin Genet ; 98(4): 353-364, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33111345

RESUMO

Mutations in more than 150 genes are responsible for inherited hearing loss, with thousands of different, severe causal alleles that vary among populations. The Israeli Jewish population includes communities of diverse geographic origins, revealing a wide range of deafness-associated variants and enabling clinical characterization of the associated phenotypes. Our goal was to identify the genetic causes of inherited hearing loss in this population, and to determine relationships among genotype, phenotype, and ethnicity. Genomic DNA samples from informative relatives of 88 multiplex families, all of self-identified Jewish ancestry, with either non-syndromic or syndromic hearing loss, were sequenced for known and candidate deafness genes using the HEar-Seq gene panel. The genetic causes of hearing loss were identified for 60% of the families. One gene was encountered for the first time in human hearing loss: ATOH1 (Atonal), a basic helix-loop-helix transcription factor responsible for autosomal dominant progressive hearing loss in a five-generation family. Our results show that genomic sequencing with a gene panel dedicated to hearing loss is effective for genetic diagnoses in a diverse population. Comprehensive sequencing enables well-informed genetic counseling and clinical management by medical geneticists, otolaryngologists, audiologists, and speech therapists and can be integrated into newborn screening for deafness.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Surdez/genética , Predisposição Genética para Doença , Perda Auditiva/genética , Adolescente , Adulto , Criança , Pré-Escolar , Surdez/epidemiologia , Surdez/patologia , Feminino , Estudos de Associação Genética , Perda Auditiva/epidemiologia , Perda Auditiva/patologia , Humanos , Israel/epidemiologia , Judeus/genética , Masculino , Linhagem , Adulto Jovem
5.
Harefuah ; 159(1): 117-122, 2020 Feb.
Artigo em Hebraico | MEDLINE | ID: mdl-32048492

RESUMO

INTRODUCTION: Deafness is the most common sensory disability in humans affecting all aspects of life. Approximately 50% of congenital deafness is hereditary and about half of genetic deafness is still unsolved. To date, more than 150 genes are known to cause hearing loss worldwide, with specific genes contributing to deafness in distinct populations. Of these, more than 20 genes are involved in deafness among the Jewish Israeli hearing-impaired population. The most common gene in many worldwide populations, including Israel, is GJB2, which encodes the connexin 26 protein. The second most common gene among Jews is TMC1, with most pathogenic variants found only among Jews of Moroccan origin. Most other pathogenic variants found in the Jewish population are origin-specific and not found in other Jewish ethnic groups or in other worldwide populations. In patients where hereditary deafness is suspected, known variants in the specific ethnicity are routinely examined. In Israel, the GJB2 gene is screened in all cases of hereditary deafness and the TMC1 gene is screened in deaf persons of Jewish Moroccan origin. In cases where no variant is found in a known gene, more comprehensive diagnostic tests should be used. Since the beginning of the deep sequencing era, less than a decade ago, the number of deafness-related genes in the Jewish population has increased by threefold. Identifying the pathogenic variant makes it possible to study molecular pathogenesis, to anticipate and understand the prognosis, to calculate probability of concomitant morbidity, to offer prenatal diagnosis, prevent recurrence of deafness in the family and early rehabilitation. Currently, cochlear implant offers the greatest chance for rehabilitation. The hope is that understanding the molecular pathogenesis will in the future lead to personalized medical treatment. We review the genetics of deafness, with an emphasis on the Jewish population in Israel, new diagnostic methods and suggest a diagnostic algorithm and future treatment methods.


Assuntos
Surdez/congênito , Conexina 26 , Humanos , Israel , Judeus , Mutação
6.
Genet Med ; 21(11): 2442-2452, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31160754

RESUMO

PURPOSE: Pathogenic variants in GJB2 are the most common cause of autosomal recessive sensorineural hearing loss. The classification of c.101T>C/p.Met34Thr and c.109G>A/p.Val37Ile in GJB2 are controversial. Therefore, an expert consensus is required for the interpretation of these two variants. METHODS: The ClinGen Hearing Loss Expert Panel collected published data and shared unpublished information from contributing laboratories and clinics regarding the two variants. Functional, computational, allelic, and segregation data were also obtained. Case-control statistical analyses were performed. RESULTS: The panel reviewed the synthesized information, and classified the p.Met34Thr and p.Val37Ile variants utilizing professional variant interpretation guidelines and professional judgment. We found that p.Met34Thr and p.Val37Ile are significantly overrepresented in hearing loss patients, compared with population controls. Individuals homozygous or compound heterozygous for p.Met34Thr or p.Val37Ile typically manifest mild to moderate hearing loss. Several other types of evidence also support pathogenic roles for these two variants. CONCLUSION: Resolving controversies in variant classification requires coordinated effort among a panel of international multi-institutional experts to share data, standardize classification guidelines, review evidence, and reach a consensus. We concluded that p.Met34Thr and p.Val37Ile variants in GJB2 are pathogenic for autosomal recessive nonsyndromic hearing loss with variable expressivity and incomplete penetrance.


Assuntos
Conexinas/genética , Perda Auditiva/genética , Alelos , Estudos de Casos e Controles , Conexina 26/genética , Conexinas/metabolismo , Surdez/genética , Feminino , Perda Auditiva Neurossensorial/genética , Humanos , Masculino , Mutação , Polimorfismo de Nucleotídeo Único/genética
7.
Hum Mutat ; 34(8): 1102-10, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23606368

RESUMO

POU3F4 is a POU domain transcription factor that is required for hearing. In the ear, POU3F4 is essential for mesenchymal remodeling of the bony labyrinth and is the causative gene for DFNX2 human nonsyndromic deafness. Ear abnormalities underlie this form of deafness, characterized previously in multiple spontaneous, radiation-induced and transgenic mouse mutants. Here, we report three novel mutations in the POU3F4 gene that result in profound hearing loss in both humans and mice. A p.Gln79* mutation was identified in a child from an Israeli family, revealed by massively parallel sequencing (MPS). This strategy demonstrates the strength of MPS for diagnosis with only one affected individual. A second mutation, p.Ile285Argfs*43, was identified by Sanger sequencing. A p.Cys300* mutation was found in an ENU-induced mutant mouse, schwindel (sdl), by positional cloning. The mutation leads to a predicted truncated protein, similar to the human mutations, providing a relevant mouse model. The p.Ile285Argfs*43 and p.Cys300* mutations lead to a shift of Pou3f4 nuclear localization to the cytoplasm, demonstrated in cellular localization studies and in the inner ears of the mutant mice. The discovery of these mutations facilitates a deeper comprehension of the molecular basis of inner ear defects due to mutations in the POU3F4 transcription factor.


Assuntos
Citoplasma/metabolismo , Surdez/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores do Domínio POU/genética , Fatores do Domínio POU/metabolismo , Animais , Células COS , Núcleo Celular/metabolismo , Criança , Chlorocebus aethiops , Surdez/metabolismo , Orelha Interna/metabolismo , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
8.
Am J Hum Genet ; 87(1): 101-9, 2010 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-20602916

RESUMO

Age-related hearing loss is due to death over time, primarily by apoptosis, of hair cells in the inner ear. Studies of mutant genes responsible for inherited progressive hearing loss have suggested possible mechanisms for hair cell death, but critical connections between these mutations and the causes of progressive hearing loss have been elusive. In an Israeli kindred, dominant, adult-onset, progressive nonsyndromic hearing loss DFNA51 is due to a tandem inverted genomic duplication of 270 kb that includes the entire wild-type gene encoding the tight junction protein TJP2 (ZO-2). In the mammalian inner ear, TJP2 is expressed mainly in tight junctions, and also in the cytoplasm and nuclei. TJP2 expression normally decreases with age from embryonic development to adulthood. In cells of affected family members, TJP2 transcript and protein are overexpressed, leading to decreased phosphorylation of GSK-3beta and to altered expression of genes that regulate apoptosis. These results suggest that TJP2- and GSK-3beta-mediated increased susceptibility to apoptosis of cells of the inner ear is the mechanism for adult-onset hearing loss in this kindred and may serve as one model for age-related hearing loss in the general population.


Assuntos
Proteínas Reguladoras de Apoptose/biossíntese , Perda Auditiva/genética , Proteínas de Membrana/genética , Junções Íntimas/metabolismo , Animais , Orelha Interna/embriologia , Orelha Interna/crescimento & desenvolvimento , Orelha Interna/metabolismo , Duplicação Gênica , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Perda Auditiva/metabolismo , Humanos , Proteínas de Membrana/biossíntese , Camundongos , Linhagem , Fosforilação , Proteína da Zônula de Oclusão-2
9.
Nucleic Acids Res ; 39(Database issue): D793-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21097778

RESUMO

The rapid accumulation of knowledge on biological signaling pathways and their regulatory mechanisms has highlighted the need for specific repositories that can store, organize and allow retrieval of pathway information in a way that will be useful for the research community. SPIKE (Signaling Pathways Integrated Knowledge Engine; http://www.cs.tau.ac.il/&~spike/) is a database for achieving this goal, containing highly curated interactions for particular human pathways, along with literature-referenced information on the nature of each interaction. To make database population and pathway comprehension straightforward, a simple yet informative data model is used, and pathways are laid out as maps that reflect the curator’s understanding and make the utilization of the pathways easy. The database currently focuses primarily on pathways describing DNA damage response, cell cycle, programmed cell death and hearing related pathways. Pathways are regularly updated, and additional pathways are gradually added. The complete database and the individual maps are freely exportable in several formats. The database is accompanied by a stand-alone software tool for analysis and dynamic visualization of pathways.


Assuntos
Bases de Dados Factuais , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Transdução de Sinais , Apoptose , Ciclo Celular , Dano ao DNA , Humanos
10.
J Clin Med ; 11(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36233414

RESUMO

The SLC26A4 gene, which encodes the anion exchanger pendrin, is involved in determining syndromic (Pendred syndrome) and non-syndromic (DFNB4) autosomal recessive hearing loss. SLC26A4 c.349C>T, p.L117F is a relatively common allele in the Ashkenazi Jewish community, where its minor allele frequency is increased compared to other populations. Although segregation and allelic data support the pathogenicity of this variant, former functional tests showed characteristics that were indistinguishable from those of the wild-type protein. Here, we applied a triad of cell-based assays, i.e., measurement of the ion transport activity by a fluorometric method, determination of the subcellular localization by confocal microscopy, and assessment of protein expression levels, to conclusively assign or exclude the pathogenicity of SLC26A4 p.L117F. This protein variant showed a moderate, but significant, reduction in ion transport function, a partial retention in the endoplasmic reticulum, and a strong reduction in expression levels as a consequence of an accelerated degradation by the Ubiquitin Proteasome System, all supporting pathogenicity. The functional and molecular features of human pendrin p.L117F were recapitulated by the mouse ortholog, thus indicating that a mouse carrying this variant might represent a good model of Pendred syndrome/DFNB4.

11.
Cell Physiol Biochem ; 28(3): 535-44, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22116368

RESUMO

Genomic technology has completely changed the way in which we are able to diagnose human genetic mutations. Genomic techniques such as the polymerase chain reaction, linkage analysis, Sanger sequencing, and most recently, massively parallel sequencing, have allowed researchers and clinicians to identify mutations for patients with Pendred syndrome and DFNB4 non-syndromic hearing loss. While thus far most of the mutations have been in the SLC26A4 gene coding for the pendrin protein, other genetic mutations may contribute to these phenotypes as well. Furthermore, mouse models for deafness have been invaluable to help determine the mechanisms for SLC26A4-associated deafness. Further work in these areas of research will help define genotype-phenotype correlations and develop methods for therapy in the future.


Assuntos
Perda Auditiva/genética , Perda Auditiva/patologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Animais , Ânions/metabolismo , Orelha Interna/fisiopatologia , Humanos , Mutação , Transportadores de Sulfato
12.
Cell Physiol Biochem ; 28(3): 477-84, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22116360

RESUMO

BACKGROUND: Pendrin is a transport protein exchanging chloride for other anions, such as iodide in the thyroid gland or bicarbonate in the inner ear. Mutations in the SLC26A4 gene encoding for pendrin are responsible for both syndromic (Pendred syndrome) and non-syndromic (non-syndromic enlarged vestibular aqueduct, EVA) hearing loss. Besides clinical and radiological assessments, molecular and functional studies are essential for the correct diagnosis of Pendred syndrome and non-syndromic EVA. While a broad spectrum of mutations found in the Caucasian population has been functionally characterized, little is known about mutations specifically occurring in the populations of the Middle East. Here we show the characterization of the ion transport activity of three pendrin mutations previously found in deaf patients with EVA in the Israeli Jewish and Palestinian Arab populations, i.e. V239D, G334V X335 and I487Y FSX39. METHODS: Wild type and mutated pendrin allelic variants were functionally characterized in a heterologous over-expression system. The Cl(-)/I(-) and Cl(-)/OH(-) exchange activities were assessed by fluorometric methods suitable for measuring iodide fluxes and the intracellular pH. RESULTS: Both the Cl(-)/I(-) and the Cl(-)/OH(-) exchange activities of pendrin V239D, G334V X335 and I487Y FSX39 were significantly reduced with respect to the wild type, with V239D displaying a residual iodide transport. CONCLUSION: Functional assays confirmed the diagnosis of non-syndromic EVA due to SLC26A4 mutations performed by radiological and molecular tests in deaf patients belonging to the Israeli Jewish and Palestinian Arab populations. The new finding that the V239D mutation displays residual function suggests that the symptoms caused by this mutation could be ameliorated by a pendrin 'activator', if available.


Assuntos
Árabes/genética , Judeus/genética , Proteínas de Membrana Transportadoras/genética , Mutação , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Ânions/metabolismo , Perda Auditiva/diagnóstico , Perda Auditiva/genética , Humanos , Transporte de Íons , Israel , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Transportadores de Sulfato
13.
Otol Neurotol ; 42(8): e1143-e1151, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34049328

RESUMO

OBJECTIVES: To better distinguish NOG-related-symphalangism spectrum disorder (NOG-SSD) from chromosomal 17q22 microdeletion syndromes and to inform surgical considerations in stapes surgery for patients with NOG-SSD. BACKGROUND: Mutations in NOG cause a variety of skeletal syndromes that often include conductive hearing loss. Several microdeletions of chromosome 17q22 lead to severe syndromes with clinical characteristics that overlap NOG-SSD. Isolated deletion of NOG has not been described, and therefore the contribution of NOG deletion in these syndromes is unknown. METHODS: Two families with autosomal dominant NOG-SSD exhibited stapes ankylosis, facial dysmorphisms, and skeletal and joint anomalies. In each family, NOG was evaluated by genomic sequencing and candidate mutations confirmed as damaging by in vitro assays. Temporal bone histology of a patient with NOG-SSD was compared with temporal bones of 40 patients diagnosed with otosclerosis. RESULTS: Family 1 harbors a 555 kb chromosomal deletion encompassing only NOG and ANKFN1. Family 2 harbors a missense mutation in NOG leading to absence of noggin protein. The incus-footplate distance of the temporal bone was significantly longer in a patient with NOG-SSD than in patients with otosclerosis. CONCLUSION: The chromosomal microdeletion of family 1 led to a phenotype comparable to that due to a NOG point mutation and much milder than the phenotypes due to other chromosome 17q22 microdeletions. Severe clinical findings in other microdeletion cases are likely due to deletion of genes other than NOG. Based on temporal bone findings, we recommend that surgeons obtain longer stapes prostheses before stapes surgery in individuals with NOG-SSD stapes ankylosis.


Assuntos
Deformidades Congênitas do Pé , Deformidades Congênitas da Mão , Sinostose , Ossos do Carpo/anormalidades , Heterogeneidade Genética , Humanos , Estribo/anormalidades , Sinostose/genética , Ossos do Tarso/anormalidades
14.
Eur J Hum Genet ; 29(6): 988-997, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33398081

RESUMO

Nonsyndromic hearing loss is genetically heterogeneous. Despite comprehensive genetic testing, many cases remain unsolved because the clinical significance of identified variants is uncertain or because biallelic pathogenic variants are not identified for presumed autosomal recessive cases. Common synonymous variants are often disregarded. Determining the pathogenicity of synonymous variants may improve genetic diagnosis. We report a synonymous variant c.9861 C > T/p.(Gly3287=) in MYO15A in homozygosity or compound heterozygosity with another pathogenic or likely pathogenic MYO15A variant in 10 unrelated families with nonsyndromic sensorineural hearing loss. Biallelic variants in MYO15A were identified in 21 affected and were absent in 22 unaffected siblings. A mini-gene assay confirms that the synonymous variant leads to abnormal splicing. The variant is enriched in the Ashkenazi Jewish population. Individuals carrying biallelic variants involving c.9861 C > T often exhibit progressive post-lingual hearing loss distinct from the congenital profound deafness typically associated with biallelic loss-of-function MYO15A variants. This study establishes the pathogenicity of the c.9861 C > T variant in MYO15A and expands the phenotypic spectrum of MYO15A-related hearing loss. Our work also highlights the importance of multicenter collaboration and data sharing to establish the pathogenicity of a relatively common synonymous variant for improved diagnosis and management of hearing loss.


Assuntos
Frequência do Gene , Perda Auditiva/genética , Miosinas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Genes Recessivos , Perda Auditiva/etnologia , Perda Auditiva/patologia , Humanos , Lactente , Judeus/genética , Masculino , Mutação , Linhagem , Splicing de RNA
15.
Pediatr Res ; 66(2): 128-34, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19390476

RESUMO

The identification of the molecular basis of deafness in the last decade has made a remarkable impact on genetic counseling and diagnostics for the hearing impaired population. Since the discovery of the most prevalent form of deafness associated with mutations in the GJB2 (connexin 26) gene, many other genes have been found worldwide, with a subset of these, including unique mutations, in Israel. Here, we review the current status of deafness genes in Israel and report one known mutation in a syndromic form of deafness, Usher syndrome, described in the Jewish Israeli population for the first time. In the future, the identification of specific mutations may be relevant for specific types of treatment.


Assuntos
Conexinas/genética , Surdez , Predisposição Genética para Doença , Judeus/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas Relacionadas a Caderinas , Caderinas/genética , Proteínas de Ciclo Celular , Conexina 26 , Proteínas do Citoesqueleto , Surdez/diagnóstico , Surdez/genética , Testes Genéticos , Humanos , Israel , Proteínas de Membrana Transportadoras/genética , Mutação , Cadeias Pesadas de Miosina/genética , Miosina Tipo III/genética , Transportadores de Sulfato , Fator de Transcrição Brn-3C/genética , Síndromes de Usher/genética
16.
Eur J Hum Genet ; 26(12): 1840-1847, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30139988

RESUMO

For multiple generations, much of the Arab population of Northern Israel has lived in communities with consanguineous marriages and large families. These communities have been particularly cooperative and informative for understanding the genetics of recessive traits. We studied the genetics of hearing loss in this population, evaluating 168 families from 46 different villages. All families were screened for founder variants by Sanger sequencing and 13 families were further evaluated by sequencing all known genes for hearing loss using our targeted gene panel HEar-Seq. Deafness in 34 of 168 families (20%) was explained by founder variants in GJB2, SLC26A4, or OTOF. In 6 of 13 families (46%) evaluated using HEar-Seq, deafness was explained by damaging alleles of SLC26A4, MYO15A, OTOG, LOXHD1, and TBC1D24. In some genes critical to hearing, it is particularly difficult to interpret variants that might affect splicing, because the genes are not expressed in accessible tissue. To address this problem for possible splice-altering variants of MYO15A, we evaluated minigenes transfected into HEK293 cells. Results revealed exon skipping in the message of MYO15A c.9083+6T>A, and intron retention in the message of MYO15A c.8340G>A, in each case leading to a premature stop and consistent with co-segregation of homozygosity for each variant with hearing loss. The profile of genetics of hearing loss in this population reflects the genetic heterogeneity of hearing loss and the usefulness of synthetic technologies to evaluate potentially causal variants in genes not expressed in accessible tissues.


Assuntos
Árabes/genética , Perda Auditiva/genética , Taxa de Mutação , Proteínas de Transporte/genética , Conexina 26 , Conexinas/genética , Feminino , Proteínas Ativadoras de GTPase , Células HEK293 , Perda Auditiva/epidemiologia , Humanos , Israel , Masculino , Proteínas de Membrana/genética , Miosinas/genética , Proteínas do Tecido Nervoso , Linhagem , Transportadores de Sulfato/genética
17.
Arch Otolaryngol Head Neck Surg ; 132(4): 416-24, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16618911

RESUMO

OBJECTIVE: To perform chromosomal mapping and clinical analysis of hereditary otosclerosis linked to the fourth locus for otosclerosis (OTSC4) in an Israeli family. DESIGN: Pedigree study. SETTING: A genetics of hearing loss research laboratory, a clinical genetics laboratory, a center for speech and hearing, and an otolaryngology department at a university and medical centers in Israel. SUBJECTS: An Israeli family of which 24 members were ascertained and a pedigree was constructed; 12 members had otosclerosis. INTERVENTIONS: Confirmation of otosclerosis by surgery (3 subjects) and by audiologic evaluation, medical history, and family history (9 subjects), and whole-genome scanning to identify the chromosomal region of the mutant locus. MAIN OUTCOME MEASURES: Chromosomal location of the otosclerosis locus. RESULTS: Linkage to the 16q21-23.2 interval was identified and confirmed with a logarithm of odds (LOD) score of 3.97 at theta = 0. The new locus for otosclerosis was designated OTSC4. The OTSC4 interval of 9 to 10 megabase includes several genes involved in the immune system and bone homeostasis that may be good candidates for genes otosclerosis. CONCLUSION: The elucidation of the OTSC4 gene may disclose the etiology of the disorder, and the functional and structural analysis of the protein may open new options for diagnosis, treatment, and prevention of otosclerosis.


Assuntos
Cromossomos Humanos Par 16/genética , Ligação Genética , Perda Auditiva Condutiva/genética , Otosclerose/genética , Fenótipo , Adulto , Idoso , Audiometria , Mapeamento Cromossômico , Feminino , Humanos , Israel , Escore Lod , Masculino , Pessoa de Meia-Idade , Linhagem , Penetrância
18.
Arch Otolaryngol Head Neck Surg ; 132(5): 495-500, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16702564

RESUMO

OBJECTIVE: To compare performance after cochlear implantation in children with mutations in connexin (Cx) 26 (GJB2) or Cx30 (GJB6) and children with deafness of unknown etiology. DESIGN: Genetic analysis and speech perception evaluation was performed in the children with and without Cx mutations who had undergone cochlear implantation. Speech perception performance was retrospectively analyzed 6, 12, 24, 36, and 48 months after implantation. Test material was selected according to the child's age and cognitive and language abilities. SETTING: The study took place at speech and hearing and genetic centers of a hospital in the central part of Israel and the genetics departments of 3 additional centrally located hospitals. PATIENTS: A total of 30 children who had undergone cochlear implantation were selected for the study, with control patients matched according to age at implantation, duration of implant use, and mode of communication. There was no evidence for additional disabilities or handicaps in either group. MAIN OUTCOME MEASURES: Speech perception measurements included a questionnaire, as well as closed and open-set tests. RESULTS: Overall, the 2 groups showed significant improvement in speech perception results after implantation. Four years after implantation, both groups achieved mean open-set speech perception scores of approximately 60%, 75%, and 90% for monosyllabic, 2 syllables, and words in sentences tests, respectively. CONCLUSIONS: There were no apparent differences in speech perception performance after implantation between the children with Cx mutations and children with deafness of unknown etiology. These data have important implications as a prognostic indicator when counseling candidates for cochlear implantation.


Assuntos
Implantes Cocleares , Conexinas/genética , Análise Mutacional de DNA , Surdez/genética , Percepção da Fala , Criança , Pré-Escolar , Deleção Cromossômica , Conexina 26 , Conexina 30 , Surdez/reabilitação , Feminino , Triagem de Portadores Genéticos , Homozigoto , Humanos , Lactente , Masculino , Avaliação de Resultados em Cuidados de Saúde , Reação em Cadeia da Polimerase , Estudos Retrospectivos , Teste do Limiar de Recepção da Fala
19.
J Basic Clin Physiol Pharmacol ; 25(3): 289-92, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25153233

RESUMO

BACKGROUND: Connexin 26 (GJB2) mutations are associated with various types of hearing loss, either without associated symptoms or with skin disease, constituting a form of syndromic hearing loss. These mutations can lead to deafness in either a recessive or a dominant autosomal form of inheritance. METHODS: Ascertainment of a Jewish Ashkenazi family with nonsyndromic hearing loss led to the construction of a pedigree for a four-generation family, with hearing loss detected in three successive generations. The entire coding region of the GJB2 gene was amplified and sequenced by Sanger sequencing. RESULTS: Audiological analysis revealed that the age of onset and severity of hearing loss were earlier and more severe, respectively, in each successive generation of an Ashkenazi Jewish family. A mutation, c.224G>A, leading to missense p.Arg75Gln was detected only in the affected members of the family. CONCLUSIONS: The entire coding region of GJB2 should be checked in hearing-impaired patients by Sanger sequencing, rather than examination only of the two most prevalent mutations, regardless of mode of inheritance or ethnicity. Furthermore, predictions regarding phenotype based on genotype can be difficult to make due to clinical variability in multigenerational families, as demonstrated in the family presented in this study.


Assuntos
Conexinas/genética , Surdez/genética , Conexina 26 , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Mutação , Linhagem , Fenótipo
20.
Genet Test Mol Biomarkers ; 18(2): 123-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24367894

RESUMO

Dramatic progress has been made in our understanding of the highly heterogeneous molecular bases of sensorineural hearing loss (SNHL), demonstrating the involvement of all known forms of inheritance and a plethora of genes tangled in various molecular pathways. This progress permits the provision of prognostic information and genetic counseling for affected families, which might, nevertheless, be exceedingly challenging. Here, we describe an intricate genetic investigation that included Sanger-type sequencing, BeadArray technology, and next-generation sequencing to resolve a complex case involving one family presenting syndromic and nonsyndromic SNHL phenotypes in two consecutive generations. We demonstrate and conclude that such an effort can be completed during pregnancy.


Assuntos
Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Judeus/genética , Mutação , Adulto , Família , Feminino , Efeito Fundador , Aconselhamento Genético , Testes Genéticos , Humanos , Linhagem , Fenótipo , Gravidez , Diagnóstico Pré-Natal , Síndromes de Usher/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA