Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Dairy Sci ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908706

RESUMO

Brown Swiss (BS) cows have greater urea concentrations in milk and blood compared with Holstein (HO) cows. We tested the hypothesis that BS and HO cows differ in kidney function and nitrogen excretion. Blood, saliva, urine, and feces were sampled in 31 multiparous BS and 46 HO cows kept under identical feeding and management conditions. Samples were collected at different lactational stages after the monthly DHIA control test-day. To test the glomerular filtration rate (GFR) and urea excretion, concentrations of creatinine and urea were measured in serum, urine, and saliva. As an additional marker to estimate GFR, we determined symmetric dimethylarginine (SDMA) in serum. Feces were analyzed for dry matter content and nitrogen concentration. Data on milk urea and protein concentrations, and daily milk yield were obtained from the monthly DHIA test-day records. The effects of breed, time, and parity number on blood, saliva, urine, feces, and milk parameters were evaluated with the GLM procedure with breed, time, and parity number as fixed effects. Differences between BS and HO were assessed by the Tukey-corrected t-test at P < 0.05. Concentrations of urea, creatinine, and SDMA in serum, were greater in BS than in HO cows (P < 0.01): 5.46 ± 0.19 vs 4.72 ± 0.13 mmol/L (urea), 105.96 ± 2.23 vs 93.07 ± 1.50 mmol/l (creatinine), and 16.78 ± 0.69 vs 13.39 ± 0.44 µg/dL (SDMA). We observed a greater urea concentration in BS cows (25.8 ± 0.7 vs 21.8 ± 0.7 mg/dL) and protein content in milk (3.70 ± 0.08 vs 3.45 ± 0.07%) than in HO cows (P < 0.01). Urea and creatinine concentrations in urine and saliva did not differ among breeds. No differences between BS and HO were observed for milk yield, fecal DM, and fecal nitrogen content. Dry matter intake and body weight were similar in BS and HO cows (P > 0.05). Despite greater urea, creatinine, and SDMA concentrations in blood as well as a higher milk urea content in BS compared with HO, respective concentrations in urine did not differ between breeds. In conclusion, our results demonstrate a lower renal GFR in BS compared with HO cows, thereby contributing to the greater plasma urea concentration in BS cows. However, estimation of nitrogen excretion via milk, urine, and feces does not entirely reflect nitrogen turnover within the animal.

2.
J Dairy Sci ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38522829

RESUMO

Omitting or shortening the dry period may result in a fairly constant ration throughout the transition period of dairy cows, reducing the need for adaptation of cow metabolism and rumen function to a new lactation. The objective of this study was to determine the effect of dry period length on rumen adaptation and cow metabolic state during the transition period. Twelve pregnant, rumen-cannulated Holstein Friesian dairy cows at the end of their first lactation were assigned to one of 3 treatments: a conventional (60 d), short (30 d) or no dry period (0 d). At dry-off, cows received a dry cow ration until calving. Lactating cows received a lactation ration. Cows were monitored from 8 wk before calving until 8 wk after calving for milk yield and dry matter intake (DMI). Rumen biopsies were taken from 3 locations in the rumen at 60, 40 and 10 d before calving and 3, 7, 14, 28 and 56 d after calving to assess papillae dimensions. Blood was sampled weekly from 3 wk before until 8 wk after calving, and liver biopsies were taken at wk -2, wk 2 and wk 4 relative to calving. Prepartum, DMI and milk yield were greater for cows with a short or no dry period, compared with cows with a conventional dry period. Postpartum, DMI was greater for cows with a short dry period compared with cows with a conventional dry period. Plasma glucose concentration was greater for cows without a dry period, compared with the other dry period lengths postpartum. Plasma concentrations of nonesterified fatty acids and ß-hydroxybutyrate, and liver triglyceride content, did not differ among dry period. Rumen papillae differed in size based on biopsy location, but there was no interaction between biopsy location and the effect of dry period length. Rumen papillae surface area for cows managed for a 30 d or 60 d dry period decreased toward calving. At 40 d prepartum, papillae surface area was greater for short and no dry period treatment compared with a conventional dry period. At 10 d prepartum, papillae surface area was greater for the no dry period treatment compared with both other treatments, and this difference was still present 3 d postpartum. Cows managed for a short dry period showed faster increase in papillae dimensions after calving compared with cows managed for a conventional dry period. From d 28 onwards, no differences in papillae surface area were observed. The faster rumen adaptation postpartum may be related to the increased DMI during the first weeks postpartum for cows managed for a short dry period. However, this did not result in improved metabolic status or milk yield. The results from the present study demonstrate that the dietary changes related to a conventional dry period length affected rumen papillae development, not only prepartum but also early postpartum. Further optimization of dry period length as well as dietary composition throughout the transition period may support cows in their adaptation to a new lactation.

3.
J Dairy Sci ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38580146

RESUMO

The main aim of the current study was to find biomarkers of health in calves transported at different ages. The selected blood parameters were total cholesterol, insulin and IGF-1 and the longitudinal study investigated whether or not these concentrations were different between calves that were transported from the dairy farm to the veal farm at 14 d or 28 d of age. Relationships between these blood variables and health characteristics of veal calves were investigated. In a 34-wk study period, a total of 683 calves originating from 13 Dutch dairy farms were transported at an age of 14 or 28 d to 8 Dutch veal farms. Calves were blood sampled the first wk after birth (mean and SD: 4.4 ± 2.1 d), a day before transport (mean and SD: 25.8 ± 7.3 d) and in wk 2 post-transport (mean and SD: 36.7 ± 12.2 d). In these samples, insulin, IGF-1 and total cholesterol were determined and analyzed with a linear mixed model (LMM). Individual medical treatments were recorded from birth until the day of transport at the dairy farm, and from the moment of arrival at the veal farm until slaughter, and analyzed as a binary response variable (calf treated or not) with a generalized linear mixed model. Fecal (calf with or without loose or liquid manure) and navel (calves with or without swollen and inflamed navel) scores measured during a single visit in wk 2 post-transport were also analyzed as binary response variables, whereas carcass weights at slaughter age were analyzed with a LMM. Cholesterol, insulin and IGF-1 were included as covariates in the previous models to test their relationships with the likelihood of calves being medically treated, fecal and navel scores, and carcass weights. One day before transport 28 d-old calves had higher blood cholesterol (Δ = 0.40 mmol/l) and IGF-1 (Δ = 53.6 ng/ml) concentrations, and evidence of higher insulin (Δ = 12.2 µU/ml) compared with 14 d-old calves. In wk 2 post-transport, 28-d old calves had higher blood IGF-1 (Δ = 21.1 ng/ml), with evidence of higher insulin (Δ = 12.2 µU/ml) concentrations compared with 14-d old calves. Cholesterol concentration measured one day before transport and in wk 2 post-transport had a positive relationship with carcass weight at slaughter (ß = 4.8 and 7.7 kg/mmol/l, respectively). Blood cholesterol concentration in wk 2 post-transport was negatively associated with the fecal score measured at the same sampling moment (ß = -0.55/mmol/l), with the likelihood of a calf of being treated with antibiotics (ß = -0.36/mmol/l) and other medicines (ß = -0.45/mmol/l) at the veal farm. Blood IGF-1 concentration in wk 2 post-transport was negatively associated with the likelihood of a calf of being treated with antibiotics and other medicines (both ß = -0.01/ng/ml) at the veal farm, and with fecal score recorded in wk 2 post-transport (ß = -0.004/ng/ml). When looking at the blood indicators, it appeared that calves transported at 28 d of age were more developed compared with 14 d old calves, thus transport at an older age might be more beneficial for the animals. It can be concluded that both blood cholesterol and IGF-1 concentrations seemed to be valuable biomarkers of health and energy availability in veal calves.

4.
J Dairy Sci ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969001

RESUMO

The early lactation period in dairy cows is characterized by complex interactions among energy balance (EB), disease, and alterations in metabolic and inflammatory status. The objective of this study was to cluster cows based on EB time profiles in early lactation and investigate the association between EB clusters and inflammatory status, metabolic status, oxidative stress, and disease. Holstein-Friesian dairy cows (n = 153) were selected and monitored for disease treatments during wk 1 to 6 in lactation. Weekly EB was calculated based on energy intake and energy requirements for maintenance and milk yield in wk 1 to 6 in lactation. Weekly plasma samples were analyzed for metabolic variables in wk 1 to 6, and inflammatory and oxidative stress variables in wk 1, 2, and 4 in lactation. Liver activity index (LAI) was computed from plasma albumin, cholesterol, and retino-binding protein concentration. First, cows were clustered based on time profiles of EB, resulting in 4 clusters (SP: stable positive; MN: mild negative; IN: intermediate negative; SN: severe negative). Cows in the SN cluster had higher plasma nonesterified fatty acids and ß-hydroxybutyrate concentrations, compared with cows in the SP cluster, with the MN and IN cluster being intermediate. Cows in the SN cluster had a higher milk yield, lower dry matter intake in wk 1, lower insulin concentration compared with cows in the SP cluster, and lower glucose and IGF-1 concentration compared with cows in the SP and MN clusters. Energy balance clusters were not related with plasma haptoglobin, cholesterol, albumin, paraoxonase, and liver activity index (LAI). Second, cows were grouped based on health status [IHP: cows with treatment for inflammatory health problem (endometritis, fever, clinical mastitis, vaginal discharge or retained placenta); OHP: cows with no IHP but treatment for other health problem (milk fever, cystic ovaries, claw, and leg problems, rumen and intestine problems or other diseases); NHP: cows with no treatments, in the first 6 weeks after calving]. Energy balance was not different among health status groups. The IHP cows had lower nonesterified fatty acids and greater insulin concentration in plasma compared with OHP. The IHP cows had lower plasma albumin concentration, lower LAI and higher haptoglobin concentration compared with OHP and NHP. Overall, EB time profiles were associated with the metabolic status of dairy cows in early lactation, but were only limitedly related with markers of inflammation and oxidative stress status. Inflammatory and metabolic status were related to disease events in early lactation and caused prolonged effects on liver metabolism.

5.
J Dairy Sci ; 106(12): 9879-9891, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37678770

RESUMO

The availability of certain macronutrients is likely to influence the capacity of the immune system. Therefore, we investigated the acute phase response to intramammary (i.mam.) lipopolysaccharide (LPS) in dairy cows fed a nitrogenic diet (n = 10) high in crude protein, a glucogenic diet (n = 11) high in carbohydrates and glucogenic precursors, or a lipogenic diet (n = 11) high in lipids. Thirty-two dairy cows were fed one of the dietary concentrates directly after calving until the end of trial at 27 ± 3 days in milk (mean ± standard deviation). In wk 3 of lactation, 20 µg of LPS was i.mam. injected in one quarter, and sterile NaCl (0.9%) in the contralateral quarter. Milk samples of the LPS-challenged and control quarter were taken hourly from before (0 h) until 9 h after LPS challenge and analyzed for milk amyloid A (MAA), haptoglobin (HP), and IL-8. In addition, blood samples were taken in the morning, and composite milk samples at morning and evening milkings, from 1 d before until 3 d after LPS challenge, and again on d 9, to determine serum amyloid A (SAA) and HP in blood, and MAA and HP in milk. The mRNA abundance of various immunological and metabolic factors in blood leukocytes was quantified by quantitative reverse-transcription PCR from samples taken at -18, -1, 6, 9, and 23 h relative to LPS application. The dietary concentrates did not affect any of the parameters in blood, milk, and leukocytes. The IL-8 was increased from 2 h, HP from 2 to 3 h, and MAA from 6 h relative to the LPS administration in the milk of the challenged quarter and remained elevated until 9 h. The MAA and HP were also increased at 9 h after LPS challenge in whole-udder composite milk, whereas HP and SAA in blood were increased only after 23 h. All 4 parameters were decreased again on d 9. Similar for all groups, the mRNA abundance of HP and the heat shock protein family A increased after the LPS challenge, whereas the mRNA expression of the tumor necrosis factor α and the leukocyte integrin ß 2 subunit (CD18) were decreased at 6 h after LPS challenge. The glucose transporter (GLUT)1 mRNA abundance decreased after LPS, whereas that of the GLUT3 increased, and that of the GLUT4 was not detectable. The mRNA abundance of GAPDH was increased at 9 h after LPS and remained elevated. The acute phase protein response was detected earlier in milk compared with blood indicating mammary production. However, immunological responses to LPS were not affected by the availability of specific macronutrients provided by the different diets.


Assuntos
Doenças dos Bovinos , Mastite , Feminino , Bovinos , Animais , Lipopolissacarídeos/farmacologia , Reação de Fase Aguda/metabolismo , Reação de Fase Aguda/veterinária , Interleucina-8/metabolismo , Lactação/fisiologia , Leite/metabolismo , Dieta/veterinária , Glucose/metabolismo , Proteína Amiloide A Sérica/metabolismo , Mastite/metabolismo , Mastite/veterinária , RNA Mensageiro/metabolismo , Doenças dos Bovinos/metabolismo
6.
J Dairy Sci ; 105(3): 2558-2571, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34998550

RESUMO

In response to intramammary infection (IMI), blood-derived leukocytes are transferred into milk, which can be measured as an increase of somatic cell count (SCC). Additionally, pathogen-dependent IgG increases in milk following infection. The IgG transfer into milk is associated with the opening of the blood-milk barrier, which is much more pronounced during gram-negative than gram-positive IMI. Thus, milk IgG concentration may help to predict the pathogen type causing IMI. Likewise, lactate dehydrogenase (LDH) and serum albumin (SA) cross the blood-milk barrier with IgG if its integrity is reduced. Because exact IgG analysis is complicated and difficult to automate, LDH activity and SA concentration aid as markers to predict the IgG transfer into milk in automatic milking systems (AMS). This study was conducted to test the hypothesis that LDH and SA in milk correlate with the IgG transfer, and in combination with SCC these factors allow the differentiation between gram-positive and gram-negative IMI or even more precisely the infection-causing pathogen. Further, the expression of these parameters in foremilk before (BME) and after (AME) milk ejection was tested. In the AMS, quarter milk samples (n = 686) from 48 Holstein-Friesian cows were collected manually BME and AME, followed by an aseptic sample for bacteriological culture. Mixed models were used to (1) predict the concentration of IgG transmitted from blood into milk based on LDH and SA; (2) use principal component analysis to evaluate joint patterns of SCC (cells/mL), IgG (mg/mL), LDH (U/L), and SA (mg/mL) and use the principal component scores to compare gram-positive, gram-negative, and control IMI types and BME versus AME samples; and (3) predict gram-positive and gram-negative IMI by inclusion of combined SCC-LDH and SCC-SA as predictors in the model. Overall, the SA and LDH had similar ability to predict IgG transmission from blood into milk. Comparing the areas under the curve (AUC) of the receiver operator characteristic curves, the SCC-LDH versus SCC-SA had lower gram-positive (AUC = 0.984 vs. 0.986) but similar gram-negative (AUC = 0.995 vs. 0.998) IMI prediction ability. The SCC, IgG, LDH, and SA were greater in gram-negative than in gram-positive IMI (BME and AME) in early lactation. All measured factors had higher values in milk samples taken BME than AME. In conclusion, LDH and SA could be used as replacement markers to indicate the presence of IgG transfer from blood into milk; in combination with SCC, both SA and LDH are suitable for differentiating IMI type, and BME is better for mastitis detection in AMS.


Assuntos
Doenças dos Bovinos , Mastite Bovina , Animais , Bovinos , Contagem de Células/veterinária , Feminino , L-Lactato Desidrogenase/metabolismo , Mastite Bovina/diagnóstico , Leite/química , Albumina Sérica
7.
J Dairy Sci ; 105(5): 4624-4642, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35307177

RESUMO

Concentrate withdrawal and feed restriction are commonly used to reduce milk production and to facilitate dry-off, but may impair immune function in dairy cows. We investigated the effect of feed rations providing different amounts of nutrients in combination with feed restriction on performance, endocrine, and metabolic responses, as well as on leukocyte function before and after abrupt dry-off. Forty-three cows were studied from d 12 before until d 6 after dry-off (56 d before scheduled calving). Cows were fed experimental concentrates rich in crude protein (nitrogenic, n = 14), glucogenic precursors (glucogenic, n = 14), or lipids (lipogenic, n = 15). On d 3 before dry-off, total feed allowance was restricted to 50% in half of the animals of each dietary group, whereas feed allowance remained unchanged in the other animals. Performance parameters (milk yield, milk composition, and dry matter intake) were recorded, and daily blood and milk samples were taken and analyzed for various metabolic and endocrine parameters. Additionally, activity and mRNA abundance of several genes in leukocytes were measured at selected time points before and after feed restriction and dry-off, respectively. Feed restriction immediately resulted in a negative energy balance and decreased milk production. Concomitantly, concentrations of nonesterified fatty acids increased, whereas insulin, insulin-like growth factor-1, and glucagon decreased. After dry-off, energy balance turned positive and plasma nonesterified fatty acids decreased. Plasma glucose, insulin, and insulin-like growth factor-1 concentrations increased in all groups after dry-off. Glucose, insulin, and glucagon concentrations in plasma were higher in nonrestricted compared with restricted animals after dry-off. The experimental concentrate types marginally affected the investigated metabolic and endocrine factors, with the exception of elevated milk and plasma urea concentrations in cows fed the nitrogenic concentrate. Chemotactic and phagocytic activity of leukocytes were not affected by diets, feed restriction, or dry-off. Likewise, blood leukocyte mRNA abundance encoding for tumor necrosis factor α (TNF), heat shock protein family A (HSP70), and the glucose transporters (GLUT) 1 and 3 remained unchanged throughout the study period. Overall, the short-term negative energy balance induced by feed restriction was temporarily accompanied by metabolic adaptations, but did not alter the studied factors related to the immune system. Metabolic and endocrine adaptations supporting milk synthesis were continued during the first days after dry-off despite cessation of milking. Thus, the abrupt dry-off resulted in a short-term increase of glucose and triglyceride concentrations, with a delayed endocrine response to re-establish nutrient homeostasis in blood.


Assuntos
Fator de Crescimento Insulin-Like I , Lactação , Ração Animal/análise , Animais , Bovinos , Dieta/veterinária , Metabolismo Energético/fisiologia , Ácidos Graxos não Esterificados , Feminino , Glucagon , Glucose/metabolismo , Sistema Imunitário , Insulina , Fator de Crescimento Insulin-Like I/metabolismo , Lactação/fisiologia , Leite/metabolismo , RNA Mensageiro/metabolismo
8.
J Dairy Sci ; 104(6): 6376-6388, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33773785

RESUMO

The intact blood-milk barrier (BMB) prevents an uncontrolled exchange of soluble and cellular components between blood and milk in the mammary gland. It enables the sustainability of the optimal milk composition for the nourishment of the offspring. Endothelial cells, connective tissue, the basal membrane, and mainly the epithelial cells provide the semipermeability of this barrier, allowing only a selective transfer of components necessary for milk production. The epithelial cells are closely connected to each other by different formations, in which the tight junctions are the most critical for separating the milk-containing compartments from the surrounding extracellular fluid and vasculature. During mastitis, the integrity of the BMB is reduced. This facilitates the transfer of immune cells and immune factors such as antibodies from blood into milk. Simultaneously, the transfer of soluble blood constituents without an obvious immune function into milk is promoted. Furthermore, a reduced BMB integrity causes a loss of milk constituents into the blood circulation. Different mechanisms are responsible for the barrier impairment including tight junction opening, but also cell degradation. To promote the cure of mastitis, the targeted manipulation of the BMB permeability may be a tool to optimize the immune function of the mammary gland. An intensified opening of the BMB supports the antibody transfer from blood into milk, which is supposed to increase the contribution of the specific immune system in the immune defense. On the contrary, a fast closure of the BMB during the recovery from mastitis can accelerate the normalization of milk composition and milk yield. Various agents have been experimentally shown to either open (e.g., pathogens and pathogen-associated molecular patterns, several nonsteroidal anti-inflammatory drugs, oxytocin, calcium chelators) or close (e.g., glucocorticoids, nonsteroidal anti-inflammatory drugs, natural anti-inflammatory drugs) the BMB.


Assuntos
Doenças dos Bovinos , Mastite Bovina , Animais , Bovinos , Células Endoteliais , Feminino , Imunidade , Lipopolissacarídeos , Glândulas Mamárias Animais , Leite
9.
J Dairy Sci ; 104(1): 1039-1052, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33189275

RESUMO

Nonsteroidal anti-inflammatory drugs (NSAID) are commonly used in combination with antimicrobial mastitis treatments to reduce pain. Little is known about whether meloxicam, an NSAID designed for the preferential inhibition of cyclooxygenase-2 over cyclooxygenase-1, affects the mammary immune response. The objective of this study was to analyze the mammary immune response to intramammary (local) or intravenous (systemic) administration of meloxicam with or without immune activation by lipopolysaccharide (LPS). We challenged 108 quarters of 30 cows with or without a low or high dose of LPS from Escherichia coli (0.1 or 0.2 µg/quarter), with or without meloxicam via intramammary administration (50 mg/quarter) or intravenous injection (0.5 mg/kg of body weight; ~300 mg/cow). Intramammary administration of meloxicam alone did not trigger an acute inflammatory response, verified by unchanged somatic cell count (SCC) and lactate dehydrogenase (LDH), BSA, and IgG concentrations in milk, which are normally augmented during mastitis due to an opening of the blood-milk barrier. Similarly, intramammary meloxicam did not change the mRNA abundance of inflammatory factors in mammary gland tissue. As expected, quarters challenged with either dose of LPS showed increased leukocyte infiltration (SCC); increased LDH, BSA, IgG, Na, and Cl concentrations; and diminished K concentrations in milk. In contrast to our hypothesis, the addition of intramammary or intravenous meloxicam did not reduce these markers of mastitis in milk. Instead, intramammary meloxicam appeared to accelerate the SCC response to LPS, but only at the lower LPS dose. Moreover, the mRNA expression of inflammatory factors in mammary tissue was not modified by the intramammary application of meloxicam compared with the contralateral quarters that were challenged with LPS only. We demonstrated for the first time that intramammary meloxicam at a dose of 50 mg/quarter did not trigger an immune response in the mammary glands of dairy cows. At the doses we used, meloxicam (intramammary or systemic) did not lower inflammatory responses. The intramammary administration of meloxicam seemed to stimulate leukocyte recruitment into the milk in quarters challenged with a low dose of LPS. The integrity of the blood-milk barrier was not protected by meloxicam in LPS-stimulated quarters. This study provides the first indications that meloxicam does not limit the inflammatory response in the mammary gland, although it does not impair the mammary immune system.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Mastite Bovina/tratamento farmacológico , Meloxicam/uso terapêutico , Animais , Bovinos , Contagem de Células/veterinária , Escherichia coli/efeitos dos fármacos , Feminino , Inflamação/induzido quimicamente , Inflamação/veterinária , Lipopolissacarídeos , Glândulas Mamárias Animais/metabolismo , Mastite Bovina/induzido quimicamente , Leite/citologia
10.
J Dairy Sci ; 104(2): 2438-2444, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33246611

RESUMO

Newborn ungulates depend on the timely supply of colostrum containing sufficient immunoglobulins to obtain passive immunity against disease. Brix refractometry enables a rapid on-farm estimation of colostrum quality and has been intensively studied in bovines. However, the suitability of Brix refractometers for assessing colostrum quality in goats and ewes has been scarcely evaluated. The present study compared bovine, caprine, and ovine colostrum quality estimation using an optical Brix refractometer. In addition, between-species variations in the relationships between Brix values and colostrum constituents (IgG, fat, protein, and lactose) and the accuracy of Brix refractometry at different cutoff values were evaluated by a receiver operating characteristic curve analysis. We measured the Brix value and contents of IgG, fat, protein, and lactose in 324 colostrum samples (108 cows, 116 does, and 100 ewes). Thresholds for classification of good colostrum quality (as determined by ELISA) were set at 50 mg IgG/mL in cows and 20 mg/mL in does and ewes. Bovine colostrum showed the greatest IgG concentrations compared with caprine and ovine colostrum. Fat and protein content was higher in sheep colostrum compared with the other species, whereas the highest lactose concentrations were detected in goat colostrum. Brix values ranged from 11.4 to 34.6% (22.1 ± 4.2%; mean ± standard deviation), 15.4 to 40.0% (28.5 ± 6.8%), and 8.8 to 39.8% (21.6 ± 5.3%) in bovine, ovine, and caprine colostrum, respectively. In all 3 species, Brix was highly correlated with IgG and protein concentrations (cows, r = 0.83 and 0.98; goats, r = 0.83 and 0.89; sheep, r = 0.75 and 0.87). Optimal cutoff points for greatest accuracy of Brix measurements were 19.3% Brix in cows [with 87.1% sensitivity (Se) and 100% specificity (Sp)], 20.7% Brix in does (with 53.5% Se and 100% Sp), and 26.5% Brix in ewes (with 75% Se and 91.3% Sp). In conclusion, Brix refractometry is an acceptable tool for on-farm estimations of colostrum quality in does and ewes despite distinct between-species variations in colostrum composition.


Assuntos
Bovinos , Colostro/química , Cabras , Refratometria/veterinária , Ovinos , Animais , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Cabras/imunologia , Lactose , Gravidez , Curva ROC , Ovinos/imunologia
11.
J Dairy Sci ; 104(3): 3646-3664, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33455762

RESUMO

Sufficient glucose availability is crucial for exploiting the genetic potential of milk production during early lactation, and endocrine changes are mainly related to repartitioning of nutrient supplies toward the mammary gland. Long-chain fatty acids, such as essential fatty acids (EFA) and conjugated linoleic acid (CLA), have the potential to improve negative energy balance and modify endocrine changes. In the present study, the hypothesis that combined CLA and EFA treatment supports glucose metabolism around the time of calving and stimulates insulin action and the somatotropic axis in cows in an additive manner was tested. Rumen-cannulated German Holstein cows (n = 40) were investigated from wk 9 antepartum (AP) until wk 9 postpartum (PP). The cows were abomasally supplemented with coconut oil (CTRL, 76 g/d); 78 g/d of linseed and 4 g/d of safflower oil (EFA); Lutalin (CLA, isomers cis-9,trans-11 and trans-10,cis-12 CLA, each 10 g/d); or the combination of EFA+CLA. Blood samples were collected several times AP and PP to determine the concentrations of plasma metabolites and hormones related to glucose metabolism and the somatotropic axis. Liver tissue samples were collected several days AP and PP to measure glycogen concentration and the mRNA abundance of genes related to gluconeogenesis and the somatotropic axis. On d 28 AP and 21 PP, endogenous glucose production (eGP) and glucose oxidation (GOx) were measured via tracer technique. The concentration of plasma glucose was higher in CLA than in non-CLA-treated cows, and the plasma ß-hydroxybutyrate concentration was higher in EFA than in non-EFA cows on d 21 PP. The eGP increased from AP to PP with elevated eGP in EFA and decreased eGP in CLA-treated cows; GOx was lower in CLA than in CTRL on d 21 PP. The plasma insulin concentration decreased after calving in all groups and was higher in CLA than in non-CLA cows at several time points. Plasma glucagon and cortisol concentrations on d 21 PP were lower in CLA than non-CLA groups. The glucagon/insulin and glucose/insulin ratios were higher in CTRL than in CLA group during the transition period. Plasma IGF-I concentration was lower in EFA than non-EFA cows on d 42 AP and was higher during the dry period and early lactation in CLA than in non-CLA cows. The IGF binding protein (IGFBP)-3/-2 ratio in blood plasma was higher in CLA than in non-CLA cows. Hepatic glycogen concentration on d 28 PP was higher, but the mRNA abundance of PC and IGFBP2 was lower in CLA than non-CLA cows on d 1 PP. The EFA treatment decreased the mRNA abundance of IGFBP3 AP and PCK1, PCK2, G6PC, PCCA, HMGCS2, IGFBP2, and INSR at several time points PP. Results indicated elevated concentrations of plasma glucose and insulin along with the stimulation of the somatotropic axis in cows treated with CLA, whereas EFA treatment stimulated eGP but not mRNA abundance related to eGP PP. The systemic effects of the combined EFA+CLA treatment were very similar to those of CLA treatment, but the effects on hepatic gene expression partially corresponded to those of EFA treatment.


Assuntos
Ácidos Linoleicos Conjugados , Abomaso , Animais , Bovinos , Suplementos Nutricionais , Ácidos Graxos , Ácidos Graxos Essenciais , Feminino , Glucose , Lactação , Leite , Gravidez
12.
J Dairy Sci ; 104(6): 7295-7314, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33715856

RESUMO

We tested the hypothesis that the maternal supply of essential fatty acids (EFA), especially α-linolenic acid, and conjugated linoleic acid (CLA), affects glucose metabolism, the endocrine regulation of energy metabolism and growth, and the intestinal development of neonatal calves. We studied calves from dams that received an abomasal infusion of 76 g/d coconut oil (CTRL; n = 9), 78 g/d linseed oil and 4 g/d safflower oil (EFA; n = 9), 38 g/d Lutalin (BASF SE) containing 27% cis-9,trans-11 and trans-10,cis-12 CLA (CLA; n = 9), or a combination of EFA and CLA (EFA+CLA; n = 11) during the last 63 d of gestation and early lactation. Calves received colostrum and transition milk from their own dam for the first 5 d of life. Insulin-like growth factor (IGF)-I, leptin, and adiponectin concentrations were measured in milk. Blood samples were taken before first colostrum intake, 24 h after birth, and from d 3 to 5 of life before morning feeding to measure metabolic and endocrine traits in plasma. On d 3 of life, energy expenditure was evaluated by a bolus injection of NaH13CO3 and determination of CO2 appearance rate. On d 4, additional blood samples were taken to evaluate glucose first-pass uptake and 13CO2 enrichment after [13C6]-glucose feeding and intravenous [6,6-2H2]-glucose bolus injection, as well as postprandial changes in glucose, nonesterified fatty acids (NEFA), insulin, and glucagon. On d 5, calves were killed 2 h after feeding and samples of small intestinal mucosa were taken for histomorphometric measurements. The concentrations of IGF-I, adiponectin, and leptin in milk decreased during early lactation in all groups, and the concentrations of leptin in first colostrum was higher in EFA than in CTRL cows. Plasma glucose concentration before first colostrum intake was higher in EFA calves than in non-EFA calves and was lower in CLA calves than in non-CLA calves. Plasma IGF-I concentration was higher on d 1 before colostrum intake in EFA calves than in EFA+CLA calves and indicated an overall CLA effect, with lower plasma IGF-I in CLA than in non-CLA calves. Postprandial NEFA concentration was lowest in EFA and CLA calves. The postprandial rise in plasma insulin was higher in EFA than in non-EFA calves. Plasma adiponectin concentration increased from d 1 to d 2 in all groups and was higher on d 3 in CLA than in non-CLA calves. Plasma leptin concentration was higher on d 4 and 5 in EFA than in non-EFA calves. Maternal fatty acid treatment did not affect energy expenditure and first-pass glucose uptake, but glucose uptake on d 4 was faster in EFA than in non-EFA calves. Crypt depth was lower, and the ratio of villus height to crypt depth was higher in the ilea of CLA than non-CLA calves. Elevated plasma glucose and IGF-I in EFA calves immediately after birth may indicate an improved energetic status in calves when dams are supplemented with EFA. Maternal EFA and CLA supplementation influenced postprandial metabolic changes and affected factors related to the neonatal insulin response.


Assuntos
Ácidos Linoleicos Conjugados , Animais , Bovinos , Dieta/veterinária , Suplementos Nutricionais , Ácidos Graxos , Ácidos Graxos Essenciais , Feminino , Lactação , Leite , Gravidez
13.
J Dairy Sci ; 103(11): 10742-10753, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32896404

RESUMO

During inflammation of the mammary gland, the blood-milk barrier, which is predominantly composed of mammary epithelial cells, loses its integrity and gradients between blood and milk cannot be maintained. Nonsteroidal anti-inflammatory drugs (NSAID) are commonly used systemically in combination with local administration of antimicrobials in mastitis treatments of dairy cows to improve the well-being of the cow during the disease. However, the knowledge about their effects on the blood-milk barrier is low. This study aimed to investigate effects of different NSAID, with different selectivity of cyclooxygenase-inhibition, on the transepithelial electrical resistance (TEER) and capacitance, cell viability, and expression of tumor necrosis factor α of bovine mammary epithelial barriers in vitro. Primary mammary epithelial cells of 3 different cows were challenged with lipopolysaccharide (LPS) from Escherichia coli with or without addition of ketoprofen (1.25 mg/mL or 4 mM), flunixin meglumine (1.0 mg/mL or 4 mM), meloxicam (0.25 mg/mL, 0.75 mg/mL, or 4 mM), diclofenac (0.75 mg/mL or 4 mM) or celecoxib (0.05 mg/mL) for 6 h. Concentrations were adapted to comparable relations of the recommended dosage for systemic application. Additionally, a similar molar concentration of all NSAID was used. Lipopolysaccharide with or without NSAID induced a decrease in TEER within 5 h, which returned to control level within 14 h. Viability of cells challenged with LPS only was not affected. However, the cell viability was decreased with increasing concentrations of NSAID and this effect was amplified with simultaneous LPS challenge. Ketoprofen at both dosages, flunixin meglumine at 1.0 mg/mL, and meloxicam at 0.75 mg/mL accelerated the recovery of TEER in comparison to LPS only (return to control level within 9 h). The comparison of NSAID effects at the same molecular quantity of 4 mM showed different effect on the barrier in which ketoprofen accelerated the recovery after LPS-induced barrier opening, whereas meloxicam and diclofenac slowed down the recovery (return to control level after 24 h). In conclusion, NSAID do not prevent the mammary epithelial barrier opening by LPS; however, ketoprofen, flunixin meglumine, and meloxicam obviously support the re-establishment of the barrier integrity. Used in mastitis therapy at an optimized dosage the tested NSAID would likely support the recovery of milk composition. However, an overdose of NSAID would likely cause tissue irritation and in turn, a delayed recovery of the barrier permeability.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Inflamação/veterinária , Mastite Bovina/tratamento farmacológico , Leite/metabolismo , Animais , Bovinos , Contagem de Células/veterinária , Clonixina/análogos & derivados , Clonixina/farmacologia , Células Epiteliais/efeitos dos fármacos , Escherichia coli/química , Feminino , Cetoprofeno/farmacologia , Lipopolissacarídeos/efeitos adversos , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/patologia , Mastite Bovina/patologia , Meloxicam/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
14.
J Dairy Sci ; 103(1): 965-971, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31668447

RESUMO

First colostrum yield and constituents as well as milk yield during established lactation vary considerably among mammary quarters in dairy cows. However, data on the development of milk yield, IgG concentration, and their distribution per quarter within cows during the first milkings after calving are scarce. We analyzed milk production and IgG concentration at the individual quarter level in 29 multiparous Holstein cows during the first 5 milkings after calving. Cow- and calf-related factors (time interval between calving and first milking, parity number, previous lactation yield, gestation length, dry period length, sex, and birth weight of the calf) potentially affecting first colostrum quality and quantity were assessed. Milking of first colostrum was carried out between 30 and 180 min after parturition. Further milkings were performed twice daily. Quarter milk yield varied between 0.1 and 5.5 kg at the first milking and between 1.4 and 5.1 kg at the fifth milking relative to parturition. Quarter IgG concentration ranged between 18.8 and 106.0 mg/mL at the first milking and between 0.8 and 46.1 mg/mL at the fifth milking. Distribution of milk yield and IgG concentration among quarters was not entirely repeatable during the first 5 successive milkings after parturition; that is, the ranking of quarters changed (intraclass correlation coefficients for quarter milk yield and IgG concentration: 0.64 and 0.79, respectively). The average hourly milk production increased in all quarters, ranging from 0.02 to 0.26 kg/h between the first 2 milkings up to 0.11 to 0.45 kg/h between the fourth and fifth milkings. First colostrum yield was not affected by any of the evaluated cow- and calf-related factors. Quarter colostrum IgG concentration was higher in cows with a higher previous lactation yield, whereas a lower colostrum IgG content was observed in cows with a longer gestation period and consequently heavier calves. In conclusion, milk yield and IgG concentration of individual quarters varied considerably, and their distribution among quarters within cows was moderately repeatable in consecutive milkings and changed partially over time. The decline of IgG concentration was independent of the concomitant increase in milk secretion, with changes occurring at different rates in individual quarters. Our results confirm the independence of the single mammary quarters at the onset of lactation despite an identical exposure to endocrine stimuli.


Assuntos
Bovinos/fisiologia , Colostro/fisiologia , Imunoglobulina G/química , Leite/fisiologia , Parto/fisiologia , Animais , Colostro/química , Feminino , Lactação , Paridade , Gravidez
15.
J Dairy Sci ; 103(6): 5604-5615, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32253039

RESUMO

Infections of the mammary gland in dairy cows are commonly accompanied by reduced milk production and feed intake and poor milk quality. The metabolic status of early-lactating cows is known to affect immune response to pathogens and imposed immune challenges. We investigated the extent to which metabolic status before an intramammary lipopolysaccharide (LPS) challenge (LPS-CH) is associated with immune response, milk production, and feed intake and the recovery thereof. In 15 Holstein cows, weekly blood sampling and daily recording of dry matter intake, milk yield, milk composition, and body weight (to calculate energy balance) was started immediately after parturition. In wk 4 after parturition, cows underwent an intramammary LPS-CH (50 µg of LPS into 1 quarter). Blood and milk samples were taken in parallel at 30- and 60-min intervals, respectively, until 10 h after the LPS application. Plasma concentrations of glucose, nonesterified fatty acids, ß-hydroxybutyrate (BHB), cortisol, and insulin were analyzed. In milk, serum albumin, IgG concentration, somatic cell count (SCC), and lactate dehydrogenase (LDH) activity were determined. Dry matter intake and milk yield were recorded for an additional 6 d. Milk of the LPS-treated quarter was sampled at every milking for 8 d after the challenge. Based on plasma glucose concentrations in wk 1 to 4 after parturition before the LPS-CH, cows were retrospectively grouped into a high-glucose group (HG; 3.34-3.93 mmol/L, n = 7) and a low-glucose group (LG; 2.87-3.31 mmol/L, n = 8). Data were evaluated using mixed models with time, group, and time × group interaction as fixed effects and cow as repeated subject. Glucose was lower and BHB was higher in LG compared with HG before LPS-CH, whereas dry matter intake, energy balance, and SCC did not differ. During LPS-CH, SCC and LDH increased similarly in HG and LG, body temperature increased less in HG, and BHB and nonesterified fatty acids were higher in LG compared with HG. Dry matter intake declined in both groups during the day of the LPS-CH but recovered to prechallenge values faster in HG. Milk yield recovered within 2 d after the LPS-CH with no differences in morning milkings, whereas evening milk yield increased faster in HG. During 8 d after LPS-CH, SCC, LDH, IgG, and serum albumin in milk were lower in HG compared with LG. In conclusion, the level of circulating glucose and BHB concentrations in cows was associated with metabolic responses during an LPS-CH as well as the recovery of udder health and performance thereafter.


Assuntos
Lactação/fisiologia , Lipopolissacarídeos/toxicidade , Mastite Bovina/induzido quimicamente , Leite/citologia , Animais , Bovinos , Feminino , Glândulas Mamárias Animais/metabolismo , Mastite Bovina/metabolismo , Mastite Bovina/patologia , Estudos Retrospectivos
16.
J Dairy Sci ; 103(4): 3708-3718, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32008773

RESUMO

Adipose tissue plays an important role in a cow's ability to adapt to the metabolic demands of lactation, because of its central involvement in energy metabolism and immunity. High adiposity and adipose tissue resistance to insulin are associated with excessive lipid mobilization. We hypothesized that the response to a glucose challenge differs between cows of different body condition 21 d before and after calving and that the responses are explainable by gene expression in subcutaneous adipose tissue (SAT). In addition, we aimed to investigate insulin resistance with gene expression in SAT and lipid mobilization around parturition. Multiparous Holstein cows were grouped according to body conditions score (BCS) 4 wk before calving, as follows: BCS ≤ 3.0 = thin (T, n = 14); BCS 3.25 to 3.5 = optimal (O, n = 14); BCS ≥ 3.75 = over-conditioned (OC, n = 14). We collected SAT on d -21 and d 21 relative to calving. A reverse-transcriptase quantitative (RT-q)PCR was used to measure gene expression related to lipid metabolism. One hour after the collection of adipose tissue, an intravenous glucose tolerance test was carried out, with administration of 0.15 g of glucose per kg of body weight (with a 40% glucose solution). Once weekly from the first week before calving to the third week after calving, a blood sample was taken. The transition to lactation was associated with intensified release of energy stored in adipose tissue, a decrease in the lipogenic genes lipoprotein lipase (LPL) and diacylglycerol O-acyltransferase 2 (DGAT2), and an increase in the lipolytic gene hormone-sensitive lipase (LIPE). On d -21, compared with T cows, OC cows had lower mRNA abundance of LPL and DGAT2, and the latency of fatty acid response after glucose infusion was also longer (8.5 vs. 23.3 min) in OC cows. Cows with higher insulin area under the curve on d -21 had concurrently lower LPL and DGAT2 gene expression and greater concentration of fatty acids on d -7, d 7, and d 14. In conclusion, high adiposity prepartum lowers the whole-body lipid metabolism response to insulin and causes reduced expression of lipogenic genes in SAT 3 weeks before calving. In addition, more pronounced insulin release after glucose infusion on d -21 is related to higher lipid mobilization around calving, indicating an insulin-resistant state, and is associated with lower expression of lipogenic genes in SAT.


Assuntos
Tecido Adiposo/metabolismo , Expressão Gênica , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/fisiologia , Período Pós-Parto/metabolismo , Animais , Bovinos , Dieta/veterinária , Metabolismo Energético/fisiologia , Ácidos Graxos/metabolismo , Feminino , Glucose/metabolismo , Teste de Tolerância a Glucose , Insulina/sangue , Lactação/fisiologia , Lipogênese/genética , Período Pós-Parto/genética , Gravidez
17.
J Dairy Sci ; 103(4): 3577-3598, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32089303

RESUMO

Colostrum provides high amounts of nutritive and non-nutritive substrates, which are essential for calf nutrition and passive immunization. Colostral growth factors and hormones have beneficial effects on postnatal maturation and may affect substrate utilization and energy expenditure in neonatal calves. We tested the hypothesis that energy metabolism and its endocrine regulation differ during the first 10 d of life in calves fed either colostrum or a milk-based formula with a similar nutrient composition to colostrum, but largely depleted of bioactive substances, for the first 2 d postnatum. Male Holstein calves (n = 18) were fed either pooled colostrum (COL; n = 9) or a milk-based formula (FOR; n = 9) for the first 2 d of life. From d 3 on, all calves received same milk replacer. On d 2 and 7 of life, calves were placed in a respiration chamber for indirect calorimetric measurements to calculate heat production, fat (FOX) and carbohydrate oxidation (COX), as well as respiratory quotient. Blood was sampled on d 1 before first colostrum intake and on d 2, 3, 7, 8, 9, and 10 before morning feeding, to measure plasma concentrations of immunoglobulins, metabolites, and hormones. Additional postprandial blood samples were taken on d 1 and 9 at 30, 60, 120, 240, and 420 min after milk feeding. Liver samples were collected on d 10 of life to determine gene expression related to energy metabolism. Formula-fed calves showed lower plasma concentrations of total protein, immunoglobulins, haptoglobin, leptin, adiponectin, and insulin-like growth factor (IGF) binding protein (IGFBP)-4 during the whole study but temporarily higher plasma concentrations of urea, insulin, glucagon, triglyceride, and cholesterol on the first day after feeding, compared with concentrations in COL. The temporary increase in glucagon, triglyceride, and cholesterol on d 1 reversed on d 2 or 3, showing higher concentrations in COL than in FOR calves. In FOR, IGF-I, IGFBP-2, and IGFBP-3 were lower on d 3 than in COL. Interestingly, FOR calves had higher heat production during respiratory measurements on d 2 and higher body temperature on d 2, 3, and 5 than those of COL. The hepatic mRNA abundance of cytosolic phosphoenolpyruvate carboxykinase was higher in FOR than in COL. Our results indicate that first milk feeding after birth influenced whole-body energy expenditure but not FOX and COX in neonatal calves, and the absorption of colostral leptin and adiponectin might affect insulin sensitivity on d 1 of life.


Assuntos
Ração Animal , Animais Recém-Nascidos , Colostro , Sistema Endócrino/metabolismo , Metabolismo Energético , Animais , Bovinos , Colesterol/sangue , Colostro/metabolismo , Dieta/veterinária , Alimentos Formulados , Glucagon/sangue , Insulina/sangue , Fígado/metabolismo , Masculino , Leite/metabolismo , Período Pós-Prandial , RNA Mensageiro/metabolismo , Ureia/sangue
18.
J Dairy Sci ; 102(4): 2828-2843, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30799117

RESUMO

Milk production of dairy cows has increased markedly during recent decades and continues to increase further. The evolutionarily conserved direction of nutrients to the mammary gland immediately after calving provided the basis for successful selective breeding toward higher performance. Considerable variation in adaptive responses toward energy and nutrient shortages exists; however, this variation in adaptability recently gained interest for identifying more metabolically robust dairy cows. Metabolic challenges during periods of high milk production considerably affect the immune system, reproductive performance, and product quality as well as animal welfare. Moreover, growing consumer concerns need to be taken into consideration because the public perception of industrialized dairy cow farming, the high dependency on feed sources suitable for human nutrition, and the apparently abundant use of antibiotics may affect the sales of dairy products. Breeding for high yield continues, but the metabolic challenges increasingly come close to the adaptational limits of meeting the mammary gland's requirements. The aim of the present review is to elucidate metabolic challenges and adaptational limitations at different functional stages of the mammary gland in dairy cows. From the challenges and adaptational limitations, we derive perspectives for sustainable milk production. Based on previous research, we highlight the importance of metabolic plasticity in adaptation mechanisms at different functional stages of the mammary gland. Metabolic adaptation and plasticity change among developing, nonlactating, remodeling, and lactational stages of the mammary gland. A higher metabolic plasticity in early-lactating dairy cows could be indicative of resilience, and a high performance level without an extraordinary occurrence of health disorders can be achieved.


Assuntos
Bovinos/fisiologia , Lactação/fisiologia , Glândulas Mamárias Animais/fisiologia , Animais , Feminino , Leite
19.
J Dairy Sci ; 102(11): 10277-10290, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31447141

RESUMO

Nonsteroidal anti-inflammatory drugs are used as supportive therapy with antimicrobial treatments for mastitis in cows to alleviate pain of the inflamed mammary gland. They act mainly by inhibition of cyclooxygenases. Meloxicam (MEL) is a drug designed for cyclooxygenase-2 selectivity, which is upregulated upon inflammation, acting as a key enzyme for the conversion of arachidonic acid to prostaglandins. Although some studies in dairy cows showed positive results in recovery from mastitis when MEL was added to the treatments, direct effects of MEL on the immune system of mastitic cows are unknown. The aim of this study was to investigate effects of MEL on the immune response of bovine mammary epithelial cells (MEC) with or without simultaneous immune stimulation by pathogen-associated molecular patterns of common mastitis pathogens. Mammary epithelial cells from 4 cows were isolated and cultured. To evaluate dose effects of MEL, MEC were challenged with or without 0.2 µg/mL lipopolysaccharide (LPS; serotype O26:B6 from Escherichia coli) with addition of increasing concentrations of MEL (0, 0.25, 0.5, 1.0, 1.5, or 2.0 mg/mL). The addition of MEL prevented the increase of mRNA expression of key inflammatory factors in LPS-challenged MEC in a dose-dependent manner. To investigate the effects of MEL on pathogen-specific immune responses of MEC, treatments included challenges with LPS from E. coli and lipoteichoic acid from Staphylococcus aureus with or without 1.5 mg/mL MEL for 3, 6, and 24 h. Meloxicam prevented the increase of mRNA abundance of key inflammatory mediators in response to LPS and lipoteichoic acid, such as tumor necrosis factor, serum amyloid A, inducible nitric oxide synthase, and the chemokines IL-8 and CXC chemokine ligands 3 and 5. The prostaglandin E2 synthesis in challenged and nonchallenged cells was reduced by MEL within 24 h. Furthermore, MEL reduced the viability and consequently the total RNA yield of the cells. However, mRNA abundance of apoptosis-related enzymes was not affected by any treatment. Meloxicam had clear dose-dependent effects on the immune response of MEC to pathogen-associated molecular patterns of common mastitis pathogens by preventing increased expression of important factors involved in inflammation. This nonsteroidal anti-inflammatory drug also has detrimental effects on cell viability. How these effects would influence the elimination of pathogens from an infected mammary gland during mastitis therapy with meloxicam needs to be further investigated.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Inibidores de Ciclo-Oxigenase 2/uso terapêutico , Inflamação/veterinária , Mastite Bovina/tratamento farmacológico , Meloxicam/uso terapêutico , Animais , Biomarcadores/análise , Bovinos , Células Epiteliais/patologia , Escherichia coli/química , Feminino , Lipopolissacarídeos/efeitos adversos , Glândulas Mamárias Animais/patologia , Mastite Bovina/patologia , Staphylococcus aureus/química , Ácidos Teicoicos/efeitos adversos
20.
J Dairy Sci ; 102(6): 5542-5549, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30904298

RESUMO

Colostrum represents the sole source to acquire humoral immunity and is an important energy source for newborn lambs and goat kids. However, colostrum composition (i.e., the contents of IgG, fat, protein, and lactose) is affected by various factors such as parity and litter size and, potentially, by breed. In the present study, we examined the colostrum composition of different goat and sheep breeds raised for milk and meat production in Switzerland and Germany. Ten goat breeds (Anglo-Nubian, Appenzell, Boer, Bunte Deutsche Edelziege, Chamois-colored, Grisons Striped, Peacock, Saanen, Toggenburg, and Valais Blackneck) and 10 sheep breeds (Brown-Headed Meat, East Friesian Milk, German Blackheaded Mutton, Gray Horned Heath, Lacaune Dairy, Merino Land, Swiss Black-Brown Mountain, Swiss Charollais, Swiss White Alpine, and Valais Blacknose) were involved in this study. First colostrum samples were obtained from ewes (n = 100) and goats (n = 116) between 10 and 390 min after parturition and analyzed for total IgG, fat, protein, and lactose contents. Colostral IgG concentrations varied between 4.8 and 75.0 mg/mL in goats, and between 6.2 and 65.4 mg/mL in ewes, and the time interval between milking and parturition did not affect colostral IgG concentrations. In goats, the highest IgG concentrations were found in Boer (meat-type; 61.0 ± 10.3 mg/mL; mean ± SD) and the lowest concentrations were observed in Bunte Deutsche Edelziege (milk-type; 26.5 ± 12.5 mg/mL). In sheep, East Friesian Milk and Lacaune Dairy showed the lowest colostral IgG concentrations (17.9 ± 7.3 and 20.2 ± 8.0 mg/mL, respectively), and the highest values were observed in the Merino Land breed (44.2 ± 15.7 mg/mL). The lowest fat and protein concentrations and concomitantly highest lactose concentrations were observed in colostrum of East Friesian Milk and Lacaune Dairy sheep. Parity number did not affect colostrum composition in sheep or goats. In contrast, colostral fat content was higher in ewes bearing twins and triplets than in those carrying singletons. Increasing litter size tended to be associated with higher protein and lower lactose concentrations in ovine (i.e., singletons vs. twins vs. triplets) and caprine colostrum (i.e., singletons vs. twins), whereas colostral IgG concentrations were not affected by litter size. In conclusion, IgG and concentrations of other colostrum constituents showed a wide range in goats and ewes and were mainly affected by the type of breed.


Assuntos
Colostro/química , Cabras/imunologia , Imunoglobulina G/análise , Leite/metabolismo , Ovinos/imunologia , Animais , Colostro/imunologia , Ácidos Graxos/análise , Feminino , Alemanha , Lactose/análise , Tamanho da Ninhada de Vivíparos , Paridade , Parto , Gravidez , Proteínas/análise , Especificidade da Espécie , Suíça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA