Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(20): 207301, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38829098

RESUMO

One of the central tasks in many-body physics is the determination of phase diagrams. However, mapping out a phase diagram generally requires a great deal of human intuition and understanding. To automate this process, one can frame it as a classification task. Typically, classification problems are tackled using discriminative classifiers that explicitly model the probability of the labels for a given sample. Here we show that phase-classification problems are naturally suitable to be solved using generative classifiers based on probabilistic models of the measurement statistics underlying the physical system. Such a generative approach benefits from modeling concepts native to the realm of statistical and quantum physics, as well as recent advances in machine learning. This leads to a powerful framework for the autonomous determination of phase diagrams with little to no human supervision that we showcase in applications to classical equilibrium systems and quantum ground states.

2.
Phys Rev Lett ; 131(19): 190402, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38000429

RESUMO

We theoretically describe macroscopic quantum synchronization effects occurring in a network of all-to-all coupled quantum limit-cycle oscillators. The coupling causes a transition to synchronization as indicated by the presence of global phase coherence. We demonstrate that the microscopic quantum properties of the oscillators qualitatively shape the synchronization behavior in a macroscopically large network. Specifically, they result in a blockade of collective synchronization that is not expected for classical oscillators. Additionally, the macroscopic ensemble shows emergent behavior not present at the level of two coupled quantum oscillators.

3.
Phys Rev Lett ; 126(23): 237001, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34170185

RESUMO

Superconductivity is commonly destroyed by a magnetic field due to orbital or Zeeman-induced pair breaking. Surprisingly, the spin-valley locking in a two-dimensional superconductor with spin-orbit interaction makes the superconducting state resilient to large magnetic fields. We investigate the spectral properties of such an Ising superconductor in a magnetic field taking into account disorder. The interplay of the in-plane magnetic field and the Ising spin-orbit coupling leads to noncollinear effective fields. We find that the emerging singlet and triplet pairing correlations manifest themselves in the occurrence of "mirage" gaps: at (high) energies of the order of the spin-orbit coupling strength, a gaplike structure in the spectrum emerges that mirrors the main superconducting gap. We show that these mirage gaps are signatures of the equal-spin triplet finite-energy pairing correlations and due to their odd parity are sensitive to intervalley scattering.

4.
Phys Rev Lett ; 121(5): 053601, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30118311

RESUMO

We investigate the minimal Hilbert-space dimension for a system to be synchronized. We first show that qubits cannot be synchronized due to the lack of a limit cycle. Moving to larger spin values, we demonstrate that a single spin 1 can be phase locked to a weak external signal of similar frequency and exhibits all the standard features of the theory of synchronization. Our findings rely on the Husimi Q representation based on spin coherent states which we propose as a tool to obtain a phase portrait.

5.
Phys Rev Lett ; 121(6): 063601, 2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30141656

RESUMO

We study synchronization in a two-node network built out of the smallest possible self-sustained oscillator: a spin-1 oscillator. We first demonstrate that phase locking between the quantum oscillators can be achieved, even for limit cycles that cannot be synchronized to an external semiclassical signal. Building upon the analytical description of the system, we then clarify the relation between quantum synchronization and the generation of entanglement. These findings establish the spin-based architecture as a promising platform for understanding synchronization in complex quantum networks.

6.
Phys Rev Lett ; 120(14): 140407, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29694141

RESUMO

The development of solid-state quantum technologies requires the understanding of quantum measurements in interacting, nonisolated quantum systems. In general, a permanent coupling of detectors to a quantum system leads to memory effects that have to be taken into account in interpreting the measurement results. We analyze a generic setup of two detectors coupled to a quantum system and derive a compact formula in the weak-measurement limit that interpolates between an instantaneous (text-book type) and almost continuous-detector dynamics-dependent-measurement. A quantum memory effect that we term "system-mediated detector-detector interaction" is crucial to observe noncommuting observables simultaneously. Finally, we propose a mesoscopic double-dot detector setup in which the memory effect is tunable and that can be used to explore the transition to non-Markovian quantum measurements experimentally.

7.
Phys Rev Lett ; 118(1): 013603, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-28106425

RESUMO

The Dicke model and the superradiance of two-level systems in a radiation field have many applications. Recently, a Dicke quantum phase transition has been realized with a Bose-Einstein condensate in a cavity. We numerically solve the many-body Schrödinger equation and study correlations in the ground state of interacting bosons in a cavity as a function of the strength of a driving laser. Beyond a critical strength, the bosons occupy multiple modes macroscopically while remaining superradiant. This fragmented superradiance can be detected by analyzing the variance of single-shot measurements.

8.
Phys Rev Lett ; 118(24): 243602, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28665640

RESUMO

Classically, the tendency towards spontaneous synchronization is strongest if the natural frequencies of the self-oscillators are as close as possible. We show that this wisdom fails in the deep quantum regime, where the uncertainty of amplitude narrows down to the level of single quanta. Under these circumstances identical self-oscillators cannot synchronize and detuning their frequencies can actually help synchronization. The effect can be understood in a simple picture: Interaction requires an exchange of energy. In the quantum regime, the possible quanta of energy are discrete. If the extractable energy of one oscillator does not exactly match the amount the second oscillator may absorb, interaction, and thereby synchronization, is blocked. We demonstrate this effect, which we coin quantum synchronization blockade, in the minimal example of two Kerr-type self-oscillators and predict consequences for small oscillator networks, where synchronization between blocked oscillators can be mediated via a detuned oscillator. We also propose concrete implementations with superconducting circuits and trapped ions. This paves the way for investigations of new quantum synchronization phenomena in oscillator networks both theoretically and experimentally.

9.
Phys Rev Lett ; 117(7): 073601, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27563961

RESUMO

We study the synchronization of a Van der Pol self-oscillator with Kerr anharmonicity to an external drive. We demonstrate that the anharmonic, discrete energy spectrum of the quantum oscillator leads to multiple resonances in both phase locking and frequency entrainment not present in the corresponding classical system. Strong driving close to these resonances leads to nonclassical steady-state Wigner distributions. Experimental realizations of these genuine quantum signatures can be implemented with current technology.

10.
Phys Rev Lett ; 112(9): 094102, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24655255

RESUMO

Synchronization is a universal phenomenon that is important both in fundamental studies and in technical applications. Here we investigate synchronization in the simplest quantum-mechanical scenario possible, i.e., a quantum-mechanical self-sustained oscillator coupled to an external harmonic drive. Using the power spectrum we analyze synchronization in terms of frequency entrainment and frequency locking in close analogy to the classical case. We show that there is a steplike crossover to a synchronized state as a function of the driving strength. In contrast to the classical case, there is a finite threshold value in driving. Quantum noise reduces the synchronized region and leads to a deviation from strict frequency locking.


Assuntos
Modelos Teóricos , Teoria Quântica , Dinâmica não Linear , Oscilometria/métodos
11.
Phys Rev Lett ; 110(10): 107006, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23521286

RESUMO

Majorana bound states have been proposed as building blocks for qubits on which certain operations can be performed in a topologically protected way using braiding. However, the set of these protected operations is not sufficient to realize universal quantum computing. We show that the electric field in a microwave cavity can induce Rabi oscillations between adjacent Majorana bound states. These oscillations can be used to implement an additional single-qubit gate. Supplemented with one braiding operation, this gate allows us to perform arbitrary single-qubit operations.

12.
Phys Rev Lett ; 110(25): 250404, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23829718

RESUMO

A long-standing problem in quantum mesoscopic physics is which operator order corresponds to noise expressions like , where I(ω) is the measured current at frequency ω. Symmetrized order describes a classical measurement while nonsymmetrized order corresponds to a quantum detector, e.g., one sensitive to either emission or absorption of photons. We show that both order schemes can be embedded in quantum weak-measurement theory taking into account measurements with memory, characterized by a memory function which is independent of a particular experimental detection scheme. We discuss the resulting quasiprobabilities for different detector temperatures and how their negativity can be tested on the level of second-order correlation functions already. Experimentally, this negativity can be related to the squeezing of the many-body state of the transported electrons in an ac-driven tunnel junction.

13.
Phys Rev Lett ; 104(17): 177205, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20482137

RESUMO

Experiments over the past years have demonstrated that it is possible to bring nanomechanical resonators and superconducting qubits close to the quantum regime and to measure their properties with an accuracy close to the Heisenberg uncertainty limit. Therefore, it is just a question of time before we will routinely see true quantum effects in nanomechanical systems. One of the hallmarks of quantum mechanics is the existence of entangled states. We propose a realistic scenario making it possible to detect entanglement of a mechanical resonator and a qubit in a nanoelectromechanical setup. The detection scheme involves only standard current and noise measurements of an atomic point contact coupled to an oscillator and a qubit. This setup could allow for the first observation of entanglement between a continuous and a discrete quantum system in the solid state.

14.
Phys Rev E ; 97(5-1): 052203, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29906836

RESUMO

Coupling two or more self-oscillating systems may stabilize their zero-amplitude rest state, therefore quenching their oscillation. This phenomenon is termed "amplitude death." Well known and studied in classical self-oscillators, amplitude death was only recently investigated in quantum self-oscillators [Ishibashi and Kanamoto, Phys. Rev. E 96, 052210 (2017)2470-004510.1103/PhysRevE.96.052210]. Quantitative differences between the classical and quantum descriptions were found. Here, we demonstrate that for quantum self-oscillators with anharmonicity in their energy spectrum, multiple resonances in the mean phonon number can be observed. This is a result of the discrete energy spectrum of these oscillators, and is not present in the corresponding classical model. Experiments can be realized with current technology and would demonstrate these genuine quantum effects in the amplitude death phenomenon.

15.
Sci Rep ; 6: 24007, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27045779

RESUMO

It has been proposed that adding disorder to a topologically trivial mercury telluride/cadmium telluride (HgTe/CdTe) quantum well can induce a transition to a topologically nontrivial state. The resulting state was termed topological Anderson insulator and was found in computer simulations of the Bernevig-Hughes-Zhang model. Here, we show that the topological Anderson insulator is a more universal phenomenon and also appears in the Kane-Mele model of topological insulators on a honeycomb lattice. We numerically investigate the interplay of the relevant parameters, and establish the parameter range in which the topological Anderson insulator exists. A staggered sublattice potential turns out to be a necessary condition for the transition to the topological Anderson insulator. For weak enough disorder, a calculation based on the lowest-order Born approximation reproduces quantitatively the numerical data. Our results thus considerably increase the number of candidate materials for the topological Anderson insulator phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA