Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
FASEB J ; 33(10): 11006-11020, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31284764

RESUMO

Monocytes/macrophages drive progression and regression of atherosclerosis. Conjugated linoleic acid (CLA), an anti-inflammatory lipid, mediates atheroprotective effects. We investigated how CLA alters monocyte/macrophage phenotype during attenuated progression and regression of atherosclerosis. Apolipoprotein E knockout (ApoE-/-) mice were fed a high-fat (60%) high-cholesterol (1%) diet (HFHCD) for 2 wk, followed by 6-wk 1% CLA 80:20 supplementation to investigate disease progression. Simultaneously, ApoE-/- mice were fed a 12-wk HFHCD with/without CLA for the final 4 wk to investigate regression. Aortic lesions were quantified by en face staining. Proteomic analysis, real-time quantitative PCR and flow cytometry were used to interrogate monocyte/macrophage phenotypes. CLA supplementation inhibited atherosclerosis progression coincident with decreased proinflammatory and increased anti-inflammatory macrophages. However, CLA-induced regression was associated with increased proinflammatory monocytes resulting in increased proresolving M2 bone marrow-derived macrophages, splenic macrophages, and dendritic cells in lesion-draining lymph nodes. Proteomic analysis confirmed regulation of a proinflammatory bone marrow response, which was abolished upon macrophage differentiation. Thus, in attenuation and regression of atherosclerosis, regardless of the monocyte signature, during monocyte to macrophage differentiation, proresolving macrophages prevail, mediating vascular repair. This study provides novel mechanistic insight into the monocyte/macrophage phenotypes in halted atherosclerosis progression and regression of atherosclerosis.-Bruen, R., Curley, S., Kajani, S., Lynch, G., O'Reilly, M. E., Dillon, E. T., Fitzsimons, S., Mthunzi, L., McGillicuddy, F. C., Belton, O. Different monocyte phenotypes result in proresolving macrophages in conjugated linoleic acid-induced attenuated progression and regression of atherosclerosis.


Assuntos
Aterosclerose/tratamento farmacológico , Diferenciação Celular , Ácidos Linoleicos Conjugados/farmacologia , Fenótipo , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Apolipoproteínas E/genética , Aterosclerose/etiologia , Aterosclerose/metabolismo , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Ácidos Linoleicos Conjugados/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Precursoras de Monócitos e Macrófagos/citologia , Células Precursoras de Monócitos e Macrófagos/efeitos dos fármacos , Células Precursoras de Monócitos e Macrófagos/metabolismo , Proteoma/genética , Proteoma/metabolismo
2.
J Pharmacol Exp Ther ; 370(3): 447-458, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31270216

RESUMO

We have shown that the glucagon-like peptide-1 receptor agonist (GLP-1RA) liraglutide (Lir) inhibits development of early atherosclerosis in vivo by modulating immune cell function. We hypothesized that Lir could attenuate pre-established disease by modulating monocyte or macrophage phenotype to induce atheroprotective responses. Human atherosclerotic plaques obtained postendarterectomy and human peripheral blood macrophages were treated ex vivo with Lir. In parallel, apolipoprotein E-deficient (ApoE-/-) mice received a high-fat, high-cholesterol diet to induce atherosclerosis for 8 weeks, after which ApoE-/- mice received 300 µg/kg of Lir daily or vehicle control for a further 4 weeks to investigate the attenuation of atherosclerosis. Lir inhibited proinflammatory monocyte chemoattractant protein-1 secretion from human endarterectomy samples and monocyte chemoattractant protein-1, tumor necrosis factor-α, and interleukin (IL)-1ß secretion from human macrophages after ex vivo treatment. An increase in CD206 mRNA and IL-10 secretion was also detected, which implies resolution of inflammation. Importantly, Lir significantly attenuated pre-established atherosclerosis in ApoE-/- mice in the whole aorta and aortic root. Proteomic analysis of ApoE-/- bone marrow cells showed that Lir upregulated the proinflammatory cathepsin protein family, which was abolished in differentiated macrophages. In addition, flow cytometry analysis of bone marrow cells induced a shift toward reduced proinflammatory and increased anti-inflammatory macrophages. We concluded that Lir attenuates pre-established atherosclerosis in vivo by altering proinflammatory mediators. This is the first study to describe a mechanism through which Lir attenuates atherosclerosis by increasing bone marrow proinflammatory protein expression, which is lost in differentiated bone marrow-derived macrophages. This study contributes to our understanding of the anti-inflammatory and cardioprotective role of GLP-1RAs. SIGNIFICANCE STATEMENT: It is critical to understand the mechanisms through which liraglutide (Lir) mediates a cardioprotective effect as many type 2 diabetic medications increase the risk of myocardial infarction and stroke. We have identified that Lir reduces proinflammatory immune cell populations and mediators from plaque-burdened murine aortas in vivo and augments proresolving bone marrow-derived macrophages in attenuation of atherosclerotic disease, which provides further insight into the atheroprotective effect of Lir.


Assuntos
Apolipoproteínas E/deficiência , Mediadores da Inflamação/metabolismo , Liraglutida/farmacologia , Fenótipo , Placa Aterosclerótica/imunologia , Placa Aterosclerótica/metabolismo , Animais , Quimiocinas/metabolismo , Progressão da Doença , Feminino , Humanos , Liraglutida/uso terapêutico , Masculino , Camundongos , Placa Aterosclerótica/tratamento farmacológico
3.
Glycobiology ; 28(7): 512-521, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29688330

RESUMO

Invariant natural killer T (iNKT) cells recognize glycolipid antigens bound to CD1d molecules on antigen-presenting cells. Therapeutic activation of iNKT cells with the xenogeneic glycolipid α-galactosylceramide (α-GalCer) can prevent and reverse tumor growth in murine models, but clinical trials using α-GalCer-stimulated human iNKT cells have shown limited efficacy. We synthesized a series of thioglycoside analogs of α-GalCer with different substituents to the galactose residue and found that two of these compounds, XZ7 and XZ11, bound to CD1d-transfected HeLa cells and activated lines of expanded human iNKT cells. Both compounds stimulated cytolytic degranulation by iNKT cells and while XZ7 preferentially stimulated the production of the antitumor cytokine interferon-γ (IFN-γ), XZ11 preferentially stimulated interleukin-4 (IL-4) production. This biased T helper type 1 effector profile of XZ7 was also evident when iNKT were stimulated with dendritic cells presenting this glycolipid. Separate analysis of the responses of CD4+, CD8α+ and CD4-CD8- iNKT cells indicated that XZ7 preferentially activated CD8α+ iNKT cells, and to a lesser degree, CD4-CD8- iNKT cells. The partial agonist effect of glycolipid XZ7, inducing cytotoxicity and IFN-γ production but not IL-4 production, indicates that specific protumour activities of iNKT cells can be abolished, while preserving their antitumor activities, by introducing structural modifications to α-GalCer. Since XZ7 was much less potent than α-GalCer as an iNKT cell agonist, it is unlikely to be superior to α-GalCer as a therapeutic agent for cancer, but may serve as a parent compound for developing more potent structural analogs.


Assuntos
Citotoxicidade Imunológica , Galactosilceramidas/imunologia , Células T Matadoras Naturais/imunologia , Células Th1/imunologia , Galactosilceramidas/química , Humanos , Interferon gama/metabolismo , Interleucina-4/metabolismo
4.
Cardiovasc Diabetol ; 16(1): 143, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29110715

RESUMO

BACKGROUND: Macrophages play a pivotal role in atherosclerotic plaque development. Recent evidence has suggested the glucagon-like peptide-1 receptor (GLP-1R) agonist, liraglutide, can attenuate pro-inflammatory responses in macrophages. We hypothesized that liraglutide could limit atherosclerosis progression in vivo via modulation of the inflammatory response. METHODS: Human THP-1 macrophages and bone marrow-derived macrophages, from both wild-type C57BL/6 (WT) and apolipoprotein E null mice (ApoE-/-) were used to investigate the effect of liraglutide on the inflammatory response in vitro. In parallel, ApoE-/- mice were fed a high-fat (60% calories from fat) high-cholesterol (1%) diet for 8 weeks to induce atherosclerotic disease progression with/without daily 300 µg/kg liraglutide administration for the final 6 weeks. Macrophages were analysed for MΦ1 and MΦ2 macrophage markers by Western blotting, RT-qPCR, ELISA and flow cytometry. Atherosclerotic lesions in aortae from ApoE-/- mice were analysed by en face staining and monocyte and macrophage populations from bone marrow derived cells analysed by flow cytometry. RESULTS: Liraglutide decreased atherosclerotic lesion formation in ApoE-/- mice coincident with a reduction in pro-inflammatory and increased anti-inflammatory monocyte/macrophage populations in vivo. Liraglutide decreased IL-1beta in MΦ0 THP-1 macrophages and bone marrow-derived macrophages from WT mice and induced a significant increase in the MΦ2 surface marker mannose receptor in both MΦ0 and MΦ2 macrophages. Significant reduction in total lesion development was found with once daily 300 µg/kg liraglutide treatment in ApoE-/- mice. Interestingly, liraglutide inhibited disease progression at the iliac bifurcation suggesting that it retards the initiation and development of disease. These results corresponded to attenuated MΦ1 markers (CCR7, IL-6 and TNF-alpha), augmented MΦ2 cell markers (Arg-1, IL-10 and CD163) and finally decreased MΦ1-like monocytes and macrophages from bone marrow-derived cells. CONCLUSIONS: This data supports a therapeutic role for liraglutide as an atheroprotective agent via modulating macrophage cell fate towards MΦ2 pro-resolving macrophages.


Assuntos
Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Hipoglicemiantes/uso terapêutico , Liraglutida/uso terapêutico , Macrófagos/metabolismo , Fenótipo , Animais , Aterosclerose/tratamento farmacológico , Linhagem Celular , Humanos , Hipoglicemiantes/farmacologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Liraglutida/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Br J Clin Pharmacol ; 83(1): 46-53, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27037767

RESUMO

Atherosclerosis, the underlying cause of heart attack and strokes, is a progressive dyslipidaemic and inflammatory disease where monocyte-derived macrophage cells play a pivotal role. Although most of the mechanisms that contribute to the progression of atherosclerosis have been identified, there is limited information on those governing regression. Conjugated linoleic acid (CLA) is a generic term denoting a group of naturally occurring isomers of linoleic acid (18:2, n6) that differ in the position or geometry (i.e. cis or trans) of their double bonds. The most predominant isomers in ruminant fats are cis-9, trans-11 CLA (c9,t11-CLA), which accounts for more than 80% of CLA isomers in dairy products and trans-10, cis-12 CLA (t10,c12-CLA). Dietary administration of a blend of the two most abundant isomers of CLA has been shown to inhibit the progression and induce the regression of pre-established atherosclerosis. Studies investigating the mechanisms involved in CLA-induced atheroprotective effects are continually emerging. The purpose of this review is to discuss comprehensively the effects of CLA on monocyte/macrophage function in atherosclerosis and to identify possible mechanisms through which CLA mediates its atheroprotective effects.


Assuntos
Aterosclerose/prevenção & controle , Ácidos Linoleicos Conjugados/uso terapêutico , Animais , Aterosclerose/imunologia , Aterosclerose/metabolismo , Citocinas/sangue , Suplementos Nutricionais , Humanos , Ácidos Linoleicos Conjugados/química , Lipídeos/sangue , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Estereoisomerismo
6.
Front Immunol ; 11: 576516, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391256

RESUMO

Background: Atherosclerosis is a chronic inflammatory disease driven by macrophage accumulation in medium and large sized arteries. Macrophage polarization and inflammation are governed by microRNAs (miR) that regulate the expression of inflammatory proteins and cholesterol trafficking. Previous transcriptomic analysis led us to hypothesize that miR-155-5p (miR-155) is regulated by conjugated linoleic acid (CLA), a pro-resolving mediator which induces regression of atherosclerosis in vivo. In parallel, as extracellular vesicles (EVs) and their miR content have potential as biomarkers, we investigated alterations in urinary-derived EVs (uEVs) during the progression of human coronary artery disease (CAD). Methods: miR-155 expression was quantified in aortae from ApoE-/- mice fed a 1% cholesterol diet supplemented with CLA blend (80:20, cis-9,trans-11:trans-10,cis-12 respectively) which had been previously been shown to induce atherosclerosis regression. In parallel, human polarized THP-1 macrophages were used to investigate the effects of CLA blend on miR-155 expression. A miR-155 mimic was used to investigate its inflammatory effects on macrophages and on ex vivo human carotid endarterectomy (CEA) plaque specimens (n = 5). Surface marker expression and miR content were analyzed in urinary extracellular vesicles (uEVs) obtained from patients diagnosed with unstable (n = 12) and stable (n = 12) CAD. Results: Here, we report that the 1% cholesterol diet increased miR-155 expression while CLA blend supplementation decreased miR-155 expression in the aorta during atherosclerosis regression in vivo. CLA blend also decreased miR-155 expression in vitro in human THP-1 polarized macrophages. Furthermore, in THP-1 macrophages, miR-155 mimic decreased the anti-inflammatory signaling proteins, BCL-6 and phosphorylated-STAT-3. In addition, miR-155 mimic downregulated BCL-6 in CEA plaque specimens. uEVs from patients with unstable CAD had increased expression of miR-155 in comparison to patients with stable CAD. While the overall concentration of uEVs was decreased in patients with unstable CAD, levels of CD45+ uEVs were increased. Additionally, patients with unstable CAD had increased CD11b+ uEVs and decreased CD16+ uEVs. Conclusion: miR-155 suppresses anti-inflammatory signaling in macrophages, is decreased during regression of atherosclerosis in vivo and is increased in uEVs from patients with unstable CAD suggesting miR-155 has potential as a prognostic indicator and a therapeutic target.


Assuntos
Síndrome Coronariana Aguda/urina , Doenças da Aorta/urina , Aterosclerose/urina , Doenças das Artérias Carótidas/metabolismo , Doença da Artéria Coronariana/urina , Vesículas Extracelulares/metabolismo , MicroRNAs/urina , Síndrome Coronariana Aguda/diagnóstico por imagem , Síndrome Coronariana Aguda/genética , Idoso , Animais , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/patologia , Biomarcadores/urina , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/patologia , Doença da Artéria Coronariana/diagnóstico por imagem , Doença da Artéria Coronariana/genética , Modelos Animais de Doenças , Progressão da Doença , Vesículas Extracelulares/genética , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , MicroRNAs/genética , Pessoa de Meia-Idade , Fosforilação , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Células THP-1
7.
Mol Nutr Food Res ; 64(7): e1900599, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31917888

RESUMO

SCOPE: High-fat diet (HFD)-induced obesity impairs macrophage-to-feces reverse cholesterol transport (RCT). It is hypothesized that dietary supplementation with the polyunsaturated fatty acids conjugated linoleic acid (CLA) or alpha linolenic acid (ALA) would prevent HFD-impaired RCT by modulating hepatic protein pathways. METHODS AND RESULTS: ApoE3L.CETP mice are fed a HFD supplemented ± CLA or ALA for 12 weeks and in vivo macrophage-to-feces RCT is determined. Hepatic cholesterol transporters and the hepatic proteome are assessed by immunoblotting and mass spectrometry, respectively. Mice fed HFD alone, but not ALA-HFD or CLA-HFD, exhibit increased systemic cholesterol levels, increased 3 H-cholesterol levels in plasma and liver but not feces during RCT, and reduced hepatic ABCG5/8 expression relative to LFD. ALA-HFD significantly reduces liver weight, hepatic cholesterol levels, and expression of the cholesterol synthesis enzyme farnesyl pyrophosphate synthase relative to HFD. ALA further increases the expression of acetyl-coA oxidase-associated proteins and suppress PPARα-induced proteins relative to HFD. CLA does not significantly attenuate hepatic lipid levels but is associated with reduced hepatic expression of fatty acid binding protein (FABP)-1/FABP4 levels relative to HFD, and reduced inflammatory pathway activation relative to ALA-HFD. CONCLUSION: ALA and CLA exert distinct mechanistic advantages on cholesterol homeostasis and RCT in obesity.


Assuntos
Colesterol/metabolismo , Ácidos Linoleicos Conjugados/farmacologia , Fígado/efeitos dos fármacos , Obesidade/dietoterapia , Ácido alfa-Linolênico/farmacologia , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Apolipoproteína E3/genética , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Fezes , Lipoproteínas/metabolismo , Fígado/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Transgênicos , Obesidade/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
8.
Front Pharmacol ; 10: 463, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139076

RESUMO

Atherosclerosis is a chronic progressive inflammatory disease where advanced lesions can eventually completely obstruct blood flow resulting in clinical events, such as a myocardial infarction or stroke. Monocytes and macrophages are the dominant biologically active immune cells involved in atherosclerosis disease and play a pivotal role during initiation, progression, and regression of disease. Altering macrophage inflammation is critical to induce regression of atherosclerosis and microRNAs (miRs) have emerged as key regulators of the macrophage phenotype. MiRs are small noncoding RNAs that regulate gene expression. They are dysregulated during atherosclerosis development and are key regulators of macrophage function and polarization. MiRs are short nucleotide transcripts that are very stable in circulation and thus have potential as therapeutics and/or biomarkers in the context of atherosclerosis. Of relevance to this review is that inhibition of macrophage-specific miR-155 may be a viable therapeutic strategy to decrease inflammation associated with atherosclerosis. However, further studies on these miRs and advancements in miR therapeutic delivery are required for these therapeutics to advance to the clinical setting. Conjugated linoleic acid (CLA), a pro-resolving lipid mediator, is an agonist of the peroxisome proliferator-activated receptor (PPAR)-γ. The biological activities of CLA have been documented to have anti-atherogenic effects in experimental models of atherosclerosis, inducing regression and impacting on monocyte and macrophage cells. Our work and that of others on PPAR-γ agonists and polyunsaturated fatty acids have shown that these mediators regulate candidate miRNAs and promote pro-resolving atherosclerotic plaque microenvironments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA