RESUMO
The evolutionary features and molecular innovations that enabled plants to first colonize land are not well understood. Here, insights are provided through our report of the genome sequence of the unicellular alga Penium margaritaceum, a member of the Zygnematophyceae, the sister lineage to land plants. The genome has a high proportion of repeat sequences that are associated with massive segmental gene duplications, likely facilitating neofunctionalization. Compared with representatives of earlier diverging algal lineages, P. margaritaceum has expanded repertoires of gene families, signaling networks, and adaptive responses that highlight the evolutionary trajectory toward terrestrialization. These encompass a broad range of physiological processes and protective cellular features, such as flavonoid compounds and large families of modifying enzymes involved in cell wall biosynthesis, assembly, and remodeling. Transcriptome profiling further elucidated adaptations, responses, and selective pressures associated with the semi-terrestrial ecosystems of P. margaritaceum, where a simple body plan would be an advantage.
Assuntos
Desmidiales/genética , Desmidiales/metabolismo , Embriófitas/genética , Evolução Biológica , Parede Celular/genética , Parede Celular/metabolismo , Ecossistema , Evolução Molecular , Filogenia , PlantasRESUMO
The vast majority of glycosidases characterized to date follow one of the variations of the 'Koshland' mechanisms1 to hydrolyse glycosidic bonds through substitution reactions. Here we describe a large-scale screen of a human gut microbiome metagenomic library using an assay that selectively identifies non-Koshland glycosidase activities2. Using this, we identify a cluster of enzymes with extremely broad substrate specificities and thoroughly characterize these, mechanistically and structurally. These enzymes not only break glycosidic linkages of both α and ß stereochemistry and multiple connectivities, but also cleave substrates that are not hydrolysed by standard glycosidases. These include thioglycosides, such as the glucosinolates from plants, and pseudoglycosidic bonds of pharmaceuticals such as acarbose. This is achieved through a distinct mechanism of hydrolysis that involves oxidation/reduction and elimination/hydration steps, each catalysed by enzyme modules that are in many cases interchangeable between organisms and substrate classes. Homologues of these enzymes occur in both Gram-positive and Gram-negative bacteria associated with the gut microbiome and other body parts, as well as other environments, such as soil and sea. Such alternative step-wise mechanisms appear to constitute largely unrecognized but abundant pathways for glycan degradation as part of the metabolism of carbohydrates in bacteria.
Assuntos
Bactérias , Microbioma Gastrointestinal , Glicosídeo Hidrolases , Polissacarídeos , Humanos , Acarbose/química , Acarbose/metabolismo , Bactérias/enzimologia , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biocatálise , Glucosinolatos/metabolismo , Glucosinolatos/química , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/química , Hidrólise , Metagenoma , Oxirredução , Plantas/química , Polissacarídeos/metabolismo , Polissacarídeos/química , Água do Mar/microbiologia , Microbiologia do Solo , Especificidade por Substrato , MasculinoRESUMO
Mixed-linkage ß(1,3)/ß(1,4)-glucan (MLG) is abundant in the human diet through the ingestion of cereal grains and is widely associated with healthful effects on metabolism and cholesterol levels. MLG is also a major source of fermentable glucose for the human gut microbiota (HGM). Bacteria from the family Prevotellaceae are highly represented in the HGM of individuals who eat plant-rich diets, including certain indigenous people and vegetarians in postindustrial societies. Here, we have defined and functionally characterized an exemplar Prevotellaceae MLG polysaccharide utilization locus (MLG-PUL) in the type-strain Segatella copri (syn. Prevotella copri) DSM 18205 through transcriptomic, biochemical, and structural biological approaches. In particular, structure-function analysis of the cell-surface glycan-binding proteins and glycoside hydrolases of the S. copri MLG-PUL revealed the molecular basis for glycan capture and saccharification. Notably, syntenic MLG-PULs from human gut, human oral, and ruminant gut Prevotellaceae are distinguished from their counterparts in Bacteroidaceae by the presence of a ß(1,3)-specific endo-glucanase from glycoside hydrolase family 5, subfamily 4 (GH5_4) that initiates MLG backbone cleavage. The definition of a family of homologous MLG-PULs in individual species enabled a survey of nearly 2000 human fecal microbiomes using these genes as molecular markers, which revealed global population-specific distributions of Bacteroidaceae- and Prevotellaceae-mediated MLG utilization. Altogether, the data presented here provide new insight into the molecular basis of ß-glucan metabolism in the HGM, as a basis for informing the development of approaches to improve the nutrition and health of humans and other animals.
Assuntos
Grão Comestível , Microbioma Gastrointestinal , beta-Glucanas , Humanos , beta-Glucanas/metabolismo , Grão Comestível/metabolismo , Grão Comestível/microbiologia , Prevotella/metabolismo , Prevotella/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/genéticaRESUMO
Bacterial and fungal copper radical oxidases (CROs) from Auxiliary Activity Family 5 (AA5) are implicated in morphogenesis and pathogenesis. The unique catalytic properties of CROs also make these enzymes attractive biocatalysts for the transformation of small molecules and biopolymers. Despite a recent increase in the number of characterized AA5 members, especially from subfamily 2 (AA5_2), the catalytic diversity of the family as a whole remains underexplored. In the present study, phylogenetic analysis guided the selection of six AA5_2 members from diverse fungi for recombinant expression in Komagataella pfaffii (syn. Pichia pastoris) and biochemical characterization in vitro. Five of the targets displayed predominant galactose 6-oxidase activity (EC 1.1.3.9), and one was a broad-specificity aryl alcohol oxidase (EC 1.1.3.7) with maximum activity on the platform chemical 5-hydroxymethyl furfural (EC 1.1.3.47). Sequence alignment comparing previously characterized AA5_2 members to those from this study indicated various amino acid substitutions at active site positions implicated in the modulation of specificity.IMPORTANCEEnzyme discovery and characterization underpin advances in microbial biology and the application of biocatalysts in industrial processes. On one hand, oxidative processes are central to fungal saprotrophy and pathogenesis. On the other hand, controlled oxidation of small molecules and (bio)polymers valorizes these compounds and introduces versatile functional groups for further modification. The biochemical characterization of six new copper radical oxidases further illuminates the catalytic diversity of these enzymes, which will inform future biological studies and biotechnological applications.
Assuntos
Cobre , Oxirredutases , Filogenia , Oxirredutases/genética , Oxirredutases/metabolismo , Oxirredutases/química , Cobre/metabolismo , Saccharomycetales/genética , Saccharomycetales/enzimologia , Especificidade por Substrato , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/química , Galactose Oxidase/genética , Galactose Oxidase/metabolismo , Galactose Oxidase/química , Alinhamento de Sequência , Sequência de Aminoácidos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Domínio CatalíticoRESUMO
Not all starches in the human diet are created equal: "resistant starches" are consolidated aggregates of the α-glucan polysaccharides amylose and amylopectin, which escape digestion by salivary and pancreatic amylases. Upon reaching the large intestine, resistant starches become fodder for members of the human gut microbiota, impacting the metabolism of both the symbionts and the host. In a recent study, Koropatkin et al. provided new molecular insight into how a keystone bacterium in the human gut microbiota adheres to resistant starches as a prelude to their breakdown and fermentation.
Assuntos
Microbioma Gastrointestinal , Amido , Amilopectina/metabolismo , Amilose/metabolismo , Glucanos , Humanos , Amido/metabolismo , alfa-Amilases/metabolismoRESUMO
Complex glycans that evade our digestive system are major nutrients that feed the human gut microbiota (HGM). The prevalence of Bacteroidetes in the HGM of populations worldwide is engendered by the evolution of polysaccharide utilization loci (PULs), which encode concerted protein systems to utilize the myriad complex glycans in our diets. Despite their crucial roles in glycan recognition and transport, cell-surface glycan-binding proteins (SGBPs) remained understudied cogs in the PUL machinery. Here, we report the structural and biochemical characterization of a suite of SGBP-A and SGBP-B structures from three syntenic ß(1,3)-glucan utilization loci (1,3GULs) from Bacteroides thetaiotaomicron (Bt), Bacteroides uniformis (Bu), and B. fluxus (Bf), which have varying specificities for distinct ß-glucans. Ligand complexes provide definitive insight into ß(1,3)-glucan selectivity in the HGM, including structural features enabling dual ß(1,3)-glucan/mixed-linkage ß(1,3)/ß(1,4)-glucan-binding capability in some orthologs. The tertiary structural conservation of SusD-like SGBPs-A is juxtaposed with the diverse architectures and binding modes of the SGBPs-B. Specifically, the structures of the trimodular BtSGBP-B and BuSGBP-B revealed a tandem repeat of carbohydrate-binding module-like domains connected by long linkers. In contrast, BfSGBP-B comprises a bimodular architecture with a distinct ß-barrel domain at the C terminus that bears a shallow binding canyon. The molecular insights obtained here contribute to our fundamental understanding of HGM function, which in turn may inform tailored microbial intervention therapies.
Assuntos
Microbioma Gastrointestinal/fisiologia , beta-Glucanas/metabolismo , Proteínas de Bactérias/metabolismo , Bacteroides/metabolismo , Bacteroides thetaiotaomicron/metabolismo , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/metabolismo , Glucanos/metabolismo , Glicosídeo Hidrolases/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Polissacarídeos/metabolismo , Especificidade da EspécieRESUMO
Xyloglucan (XyG) is a ubiquitous plant cell wall hemicellulose that is targeted by a range of syntenic, microheterogeneous xyloglucan utilization loci (XyGUL) in Bacteroidetes species of the human gut microbiota (HGM), including Bacteroides ovatus and B. uniformis. Comprehensive biochemical and biophysical analyses have identified key differences in the protein complements of each locus that confer differential access to structurally diverse XyG side chain variants. A second, nonsyntenic XyGUL was previously identified in B. uniformis, although its function in XyG utilization compared to its syntenic counterpart was unclear. Here, complementary enzymatic product profiles and bacterial growth curves showcase the notable preference of BuXyGUL2 surface glycan-binding proteins (SGBPs) to bind full-length XyG, as well as a range of oligosaccharides produced by the glycoside hydrolase family 5 (GH5_4) endo-xyloglucanase from this locus. We use isothermal titration calorimetry (ITC) to characterize this binding capacity and pinpoint the specific contributions of each protein to nutrient capture. The high-resolution structure of BuXyGUL2 SGBP-B reveals remarkable putative binding site conservation with the canonical XyG-binding BoXyGUL SGBP-B, supporting similar roles for these proteins in glycan capture. Together, these data underpin the central role of complementary XyGUL function in B. uniformis and broaden our systems-based and mechanistic understanding of XyG utilization in the HGM. IMPORTANCE The omnipresence of xyloglucans in the human diet has led to the evolution of heterogeneous gene clusters in several Bacteroidetes species in the HGM, each specially tuned to respond to the structural variations of these complex plant cell wall polysaccharides. Our research illuminates the complementary roles of syntenic and nonsyntenic XyGUL in B. uniformis in conferring growth on a variety of XyG-derived substrates, providing evidence of glycan-binding protein microadaptation within a single species. These data serve as a comprehensive overview of the binding capacities of the SGBPs from a nonsyntenic B. uniformis XyGUL and will inform future studies on the roles of complementary loci in glycan targeting by key HGM species.
Assuntos
Trato Gastrointestinal , Xilanos , Bacteroides , Glucanos , Humanos , HidróliseRESUMO
Cellulomonas flavigena is a saprotrophic bacterium that encodes, within its genome, four predicted lytic polysaccharide monooxygenases (LPMOs) from Auxiliary Activity family 10 (AA10). We showed previously that three of these cleave the plant polysaccharide cellulose by oxidation at carbon-1 (J. Li, L. Solhi, E.D. Goddard-Borger, Y. Mattieu et al., Biotechnol Biofuels 14:29, 2021, https://doi.org/10.1186/s13068-020-01860-3). Here, we present the biochemical characterization of the fourth C. flavigena AA10 member (CflaLPMO10D) as a chitin-active LPMO. Both the full-length CflaLPMO10D-Carbohydrate-Binding Module family 2 (CBM2) and catalytic module-only proteins were produced in Escherichia coli using the native general secretory (Sec) signal peptide. To quantify chitinolytic activity, we developed a high-performance anion-exchange chromatography-pulsed amperometric detection (HPAEC-PAD) method as an alternative to the established hydrophilic interaction liquid ion chromatography coupled with UV detection (HILIC-UV) method for separation and detection of released oxidized chito-oligosaccharides. Using this method, we demonstrated that CflaLPMO10D is strictly active on the ß-allomorph of chitin, with optimal activity at pH 5 to 6 and a preference for ascorbic acid as the reducing agent. We also demonstrated the importance of the CBM2 member for both mediating enzyme localization to substrates and prolonging LPMO activity. Together with previous work, the present study defines the distinct substrate specificities of the suite of C. flavigena AA10 members. Notably, a cross-genome survey of AA10 members indicated that chitinolytic LPMOs are, in fact, rare among Cellulomonas bacteria. IMPORTANCE Species from the genus Cellulomonas have a long history of study due to their roles in biomass recycling in nature and corresponding potential as sources of enzymes for biotechnological applications. Although Cellulomonas species are more commonly associated with the cleavage and utilization of plant cell wall polysaccharides, here, we show that C. flavigena produces a unique lytic polysaccharide monooxygenase with activity on ß-chitin, which is found, for example, in arthropods. The limited distribution of orthologous chitinolytic LPMOs suggests adaptation of individual cellulomonads to specific nutrient niches present in soil ecosystems. This research provides new insight into the biochemical specificity of LPMOs in Cellulomonas species and related bacteria, and it raises new questions about the physiological function of these enzymes.
Assuntos
Cellulomonas , Oxigenases de Função Mista , Bactérias/metabolismo , Cellulomonas/metabolismo , Quitina/metabolismo , Ecossistema , Oxigenases de Função Mista/metabolismo , Polissacarídeos/metabolismo , Especificidade por SubstratoRESUMO
Plants maintain large repertoires of carbohydrate-active enzymes (CAZymes)-comprising between 3% and 10% of their genomes-to synthesize, modify, and degrade the polysaccharide components of the cell wall. We recently identified a unique group of plant endo-glucanases from Glycoside Hydrolase Family 16, viz. EG16 orthologs, which constitute a sister clade to the well-known XYLOGLUCAN ENDO-TRANSGLYCOSYLASE/HYDROLASE (XTH) gene products. Biochemical analysis of EG16 orthologs from poplar (Populus trichocarpa), grapevine (Vitis vinifera), and spreading earthmoss (Physcomitrium patens) has demonstrated that these endo-glucanases are distinctly active on cell wall matrix glycans, mixed-linkage ß(1,3);ß(1,4)-glucan and xyloglucan (XyG), and that enzyme structure and specificity is highly conserved across diverse plant lineages. However, the physiological role of EG16 orthologs in any species is presently unknown. To shed light on EG16 function in vivo, here we performed reverse genetics and protein localization analyses of the single EG16 ortholog in the model moss P. patens, where this gene is highly expressed in young, expanding tissues, particularly in protonema. Surprisingly, deletion of the PpEG16 gene by homologous recombination led to an increase in growth, as well as accelerated senescence. Notably, the PpEG16 protein was shown to co-localize with XyG in the cell wall of protonema tissue, specifically at cell tips, despite lacking a secretion signal peptide. Although the precise biological role of EG16 orthologs remains elusive, our results implicate these highly conserved glycoside hydrolases in cell wall polysaccharide remodeling and recycling. We anticipate that these foundational results will inform future studies on EG16 function across plant lineages.
Assuntos
Bryopsida , Populus , Bryopsida/metabolismo , Parede Celular/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Polissacarídeos , Populus/metabolismoRESUMO
There is significant contemporary interest in the application of enzymes to replace or augment chemical reagents toward the development of more environmentally sound and sustainable processes. In particular, copper radical oxidases (CRO) from Auxiliary Activity Family 5 Subfamily 2 (AA5_2) are attractive, organic cofactor-free catalysts for the chemoselective oxidation of alcohols to the corresponding aldehydes. These enzymes were first defined by the archetypal galactose-6-oxidase (GalOx, EC 1.1.3.13) from the fungus Fusarium graminearum. The recent discovery of specific alcohol oxidases (EC 1.1.3.7) and aryl alcohol oxidases (EC 1.1.3.47) within AA5_2 has indicated a potentially broad substrate scope among fungal CROs. However, only relatively few AA5_2 members have been characterized to date. Guided by sequence similarity network and phylogenetic analysis, twelve AA5_2 homologs have been recombinantly produced and biochemically characterized in the present study. As defined by their predominant activities, these comprise four galactose 6-oxidases, two raffinose oxidases, four broad-specificity primary alcohol oxidases, and two non-carbohydrate alcohol oxidases. Of particular relevance to applications in biomass valorization, detailed product analysis revealed that two CROs produce the bioplastics monomer furan-2,5-dicarboxylic acid (FDCA) directly from 5-hydroxymethylfurfural (HMF). Furthermore, several CROs could desymmetrize glycerol (a by-product of the biodiesel industry) to D- or L-glyceraldehyde. This study furthers our understanding of CROs by doubling the number of characterized AA5_2 members, which may find future applications as biocatalysts in diverse processes.
Assuntos
Cobre/metabolismo , Radicais Livres/metabolismo , Proteínas Fúngicas/metabolismo , Fusarium/enzimologia , Metaloproteínas/metabolismo , Oxirredutases/metabolismo , Filogenia , Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Cobre/química , Radicais Livres/química , Proteínas Fúngicas/química , Metaloproteínas/química , Oxirredução , Oxirredutases/química , Conformação Proteica , Especificidade por SubstratoRESUMO
Plant cell walls are highly dynamic structures that are composed predominately of polysaccharides. As such, endogenous carbohydrate active enzymes (CAZymes) are central to the synthesis and subsequent modification of plant cells during morphogenesis. The endo-glucanase 16 (EG16) members constitute a distinct group of plant CAZymes, angiosperm orthologs of which were recently shown to have dual ß-glucan/xyloglucan hydrolase activity. Molecular phylogeny indicates that EG16 members comprise a sister clade with a deep evolutionary relationship to the widely studied apoplastic xyloglucan endo-transglycosylases/hydrolases (XTH). A cross-genome survey indicated that EG16 members occur as a single ortholog across species and are widespread in early diverging plants, including the non-vascular bryophytes, for which functional data were previously lacking. Remarkably, enzymological characterization of an EG16 ortholog from the model moss Physcomitrella patens (PpEG16) revealed that EG16 activity and sequence/structure are highly conserved across 500 million years of plant evolution, vis-à-vis orthologs from grapevine and poplar. Ex vivo biomechanical assays demonstrated that the application of EG16 gene products caused abrupt breakage of etiolated hypocotyls rather than slow extension, thereby indicating a mode-of-action distinct from endogenous expansins and microbial endo-glucanases. The biochemical data presented here will inform future genomic, genetic, and physiological studies of EG16 enzymes.
Assuntos
Bryopsida/genética , Celulase/genética , Proteínas de Plantas/genética , Plantas/genética , Sequência de Aminoácidos , Biocatálise , Bryopsida/enzimologia , Celulase/química , Celulase/metabolismo , Evolução Molecular , Glucanos/metabolismo , Cinética , Modelos Moleculares , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas/classificação , Plantas/enzimologia , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Xilanos/metabolismo , beta-Glucanas/metabolismoRESUMO
Our lower gastrointestinal tract plays host to a vast consortium of microbes, known as the human gut microbiota (HGM). The HGM thrives on a complex and diverse range of glycan structures from both dietary and host sources, the breakdown of which requires the concerted action of cohorts of carbohydrate-active enzymes (CAZymes), carbohydrate-binding proteins, and transporters. The glycan utilization profile of individual taxa, whether 'specialist' or 'generalist', is dictated by the number and functional diversity of these glycan utilization systems. Furthermore, taxa in the HGM may either compete or cooperate in glycan deconstruction, thereby creating a complex ecological web spanning diverse nutrient niches. As a result, our diet plays a central role in shaping the composition of the HGM. This review presents an overview of our current understanding of glycan utilization by the HGM on three levels: (i) molecular mechanisms of individual glycan deconstruction and uptake by key bacteria, (ii) glycan-mediated microbial interactions, and (iii) community-scale effects of dietary changes. Despite significant recent advancements, there remains much to be discovered regarding complex glycan metabolism in the HGM and its potential to affect positive health outcomes.
Assuntos
Bactérias/metabolismo , Microbioma Gastrointestinal , Polissacarídeos/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Dieta , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , HumanosRESUMO
Carbohydrate-binding modules (CBMs) are usually appended to carbohydrate-active enzymes (CAZymes) and serve to potentiate catalytic activity, for example, by increasing substrate affinity. The Gram-negative soil saprophyte Cellvibrio japonicus is a valuable source for CAZyme and CBM discovery and characterization due to its innate ability to degrade a wide array of plant polysaccharides. Bioinformatic analysis of the CJA_2959 gene product from C. japonicus revealed a modular architecture consisting of a fibronectin type III (Fn3) module, a cryptic module of unknown function (X181), and a glycoside hydrolase family 5 subfamily 4 (GH5_4) catalytic module. We previously demonstrated that the last of these, CjGH5F, is an efficient and specific endo-xyloglucanase (M. A. Attia, C. E. Nelson, W. A. Offen, N. Jain, et al., Biotechnol Biofuels 11:45, 2018, https://doi.org/10.1186/s13068-018-1039-6). In the present study, C-terminal fusion of superfolder green fluorescent protein in tandem with the Fn3-X181 modules enabled recombinant production and purification from Escherichia coli. Native affinity gel electrophoresis revealed binding specificity for the terminal galactose-containing plant polysaccharides galactoxyloglucan and galactomannan. Isothermal titration calorimetry further evidenced a preference for galactoxyloglucan polysaccharide over short oligosaccharides comprising the limit-digest products of CjGH5F. Thus, our results identify the X181 module as the defining member of a new CBM family, CBM88. In addition to directly revealing the function of this CBM in the context of xyloglucan metabolism by C. japonicus, this study will guide future bioinformatic and functional analyses across microbial (meta)genomes. IMPORTANCE This study reveals carbohydrate-binding module family 88 (CBM88) as a new family of galactose-binding protein modules, which are found in series with diverse microbial glycoside hydrolases, polysaccharide lyases, and carbohydrate esterases. The definition of CBM88 in the carbohydrate-active enzymes classification (http://www.cazy.org/CBM88.html) will significantly enable future microbial (meta)genome analysis and functional studies.
Assuntos
Proteínas de Bactérias/genética , Proteínas de Transporte , Cellvibrio/enzimologia , Glicosídeo Hidrolases , Carboidratos , Galactose/análogos & derivados , Glucanos , Glicosídeo Hidrolases/genética , Mananas , PolissacarídeosRESUMO
Glycoside hydrolase family (GH) 16 comprises a large and taxonomically diverse family of glycosidases and transglycosidases that adopt a common ß-jelly-roll fold and are active on a range of terrestrial and marine polysaccharides. Presently, broadly insightful sequence-function correlations in GH16 are hindered by a lack of a systematic subfamily structure. To fill this gap, we have used a highly scalable protein sequence similarity network analysis to delineate nearly 23,000 GH16 sequences into 23 robust subfamilies, which are strongly supported by hidden Markov model and maximum likelihood molecular phylogenetic analyses. Subsequent evaluation of over 40 experimental three-dimensional structures has highlighted key tertiary structural differences, predominantly manifested in active-site loops, that dictate substrate specificity across the GH16 evolutionary landscape. As for other large GH families (i.e. GH5, GH13, and GH43), this new subfamily classification provides a roadmap for functional glycogenomics that will guide future bioinformatics and experimental structure-function analyses. The GH16 subfamily classification is publicly available in the CAZy database. The sequence similarity network workflow used here, SSNpipe, is freely available from GitHub.
Assuntos
Proteínas de Bactérias/química , Proteínas Fúngicas/química , Glicosídeo Hidrolases/genética , Filogenia , Análise de Sequência de Proteína/métodos , Algoritmos , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Domínio Catalítico , Evolução Molecular , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Glicômica/métodos , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/classificaçãoRESUMO
Glycoside hydrolase family 74 (GH74) is a historically important family of endo-ß-glucanases. On the basis of early reports of detectable activity on cellulose and soluble cellulose derivatives, GH74 was originally considered to be a "cellulase" family, although more recent studies have generally indicated a high specificity toward the ubiquitous plant cell wall matrix glycan xyloglucan. Previous studies have indicated that GH74 xyloglucanases differ in backbone cleavage regiospecificities and can adopt three distinct hydrolytic modes of action: exo, endo-dissociative, and endo-processive. To improve functional predictions within GH74, here we coupled in-depth biochemical characterization of 17 recombinant proteins with structural biology-based investigations in the context of a comprehensive molecular phylogeny, including all previously characterized family members. Elucidation of four new GH74 tertiary structures, as well as one distantly related dual seven-bladed ß-propeller protein from a marine bacterium, highlighted key structure-function relationships along protein evolutionary trajectories. We could define five phylogenetic groups, which delineated the mode of action and the regiospecificity of GH74 members. At the extremes, a major group of enzymes diverged to hydrolyze the backbone of xyloglucan nonspecifically with a dissociative mode of action and relaxed backbone regiospecificity. In contrast, a sister group of GH74 enzymes has evolved a large hydrophobic platform comprising 10 subsites, which facilitates processivity. Overall, the findings of our study refine our understanding of catalysis in GH74, providing a framework for future experimentation as well as for bioinformatics predictions of sequences emerging from (meta)genomic studies.
Assuntos
Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Bactérias/enzimologia , Biocatálise , Cristalografia por Raios X , Fungos/enzimologia , Glicosídeo Hidrolases/genética , Cinética , Modelos Moleculares , Conformação Proteica , Estereoisomerismo , Especificidade por SubstratoRESUMO
An Auxiliary Activity Family 5 (AA5) copper-radical alcohol oxidase (AlcOx) with promiscuous activity towards simple alkyl and aromatic alcohols was evaluated using real-time reaction progress monitoring. Reaction kinetics using variable time normalization analysis (VTNA) were determined from reaction progress curves. By this approach, a detailed view of the entire reaction time course under various conditions was obtained and used to identify parameters that will inform further process optimization development. Optimal activity was found impacted by several factors, including reaction pH, oxygen saturation, and the source of a co-oxidant, either HRP or a chemical alternative, potassium ferricyanide. Analysis of reaction progress curves demonstrated that reaction stalling occurred as a result of oxygen depletion and from a loss of enzyme activity over time. The cooperativity between AlcOx, horseradish peroxidase (HRP), and catalase that result in enhanced reactivity was explored, with reaction pH being identified as a key factor for optimal activity. The results show that a process with HRP is more robust than with potassium ferricyanide, but that both oxidants likely activate AlcOx by a similar mechanism. The phenomenon of product inhibition was investigated for representative reactants, revealing that reaction inhibition was more significant for butyraldehyde than for benzaldehyde. Our analysis suggests that this is linked to the greater proportion in which butyraldehyde exists in the hydrated form.
Assuntos
Oxirredutases do Álcool/metabolismo , Biocatálise , Aldeídos , Catalase/farmacologia , Cobre , Peroxidase do Rábano Silvestre/farmacologia , Cinética , Oxidantes/farmacologia , Oxigênio/metabolismo , Oxigênio/farmacologiaRESUMO
A well-balanced human diet includes a significant intake of non-starch polysaccharides, collectively termed 'dietary fibre', from the cell walls of diverse fruits and vegetables. Owing to the paucity of alimentary enzymes encoded by the human genome, our ability to derive energy from dietary fibre depends on the saccharification and fermentation of complex carbohydrates by the massive microbial community residing in our distal gut. The xyloglucans (XyGs) are a ubiquitous family of highly branched plant cell wall polysaccharides whose mechanism(s) of degradation in the human gut and consequent importance in nutrition have been unclear. Here we demonstrate that a single, complex gene locus in Bacteroides ovatus confers XyG catabolism in this common colonic symbiont. Through targeted gene disruption, biochemical analysis of all predicted glycoside hydrolases and carbohydrate-binding proteins, and three-dimensional structural determination of the vanguard endo-xyloglucanase, we reveal the molecular mechanisms through which XyGs are hydrolysed to component monosaccharides for further metabolism. We also observe that orthologous XyG utilization loci (XyGULs) serve as genetic markers of XyG catabolism in Bacteroidetes, that XyGULs are restricted to a limited number of phylogenetically diverse strains, and that XyGULs are ubiquitous in surveyed human metagenomes. Our findings reveal that the metabolism of even highly abundant components of dietary fibre may be mediated by niche species, which has immediate fundamental and practical implications for gut symbiont population ecology in the context of human diet, nutrition and health.
Assuntos
Bacteroides/genética , Bacteroides/metabolismo , Trato Gastrointestinal/microbiologia , Loci Gênicos/genética , Glucanos/metabolismo , Xilanos/metabolismo , Sequência de Aminoácidos , Bacteroides/enzimologia , Bacteroides/crescimento & desenvolvimento , Metabolismo dos Carboidratos/genética , Sequência de Carboidratos , Parede Celular/química , Cristalografia por Raios X , Dieta , Fibras na Dieta , Evolução Molecular , Glucanos/química , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Humanos , Metagenoma , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Estrutura Terciária de Proteína , Simbiose , Xilanos/químicaRESUMO
The human gut microbiota, which underpins nutrition and systemic health, is compositionally sensitive to the availability of complex carbohydrates in the diet. The Bacteroidetes comprise a dominant phylum in the human gut microbiota whose members thrive on dietary and endogenous glycans by employing a diversity of highly specific, multi-gene polysaccharide utilization loci (PUL), which encode a variety of carbohydrases, transporters, and sensor/regulators. PULs invariably also encode surface glycan-binding proteins (SGBPs) that play a central role in saccharide capture at the outer membrane. Here, we present combined biophysical, structural, and in vivo characterization of the two SGBPs encoded by the Bacteroides ovatus mixed-linkage ß-glucan utilization locus (MLGUL), thereby elucidating their key roles in the metabolism of this ubiquitous dietary cereal polysaccharide. In particular, molecular insight gained through several crystallographic complexes of SGBP-A and SGBP-B with oligosaccharides reveals that unique shape complementarity of binding platforms underpins specificity for the kinked MLG backbone vis-à-vis linear ß-glucans. Reverse-genetic analysis revealed that both the presence and binding ability of the SusD homolog BoSGBPMLG-A are essential for growth on MLG, whereas the divergent, multi-domain BoSGBPMLG-B is dispensable but may assist in oligosaccharide scavenging from the environment. The synthesis of these data illuminates the critical role SGBPs play in concert with other MLGUL components, reveals new structure-function relationships among SGBPs, and provides fundamental knowledge to inform future (meta)genomic, biochemical, and microbiological analyses of the human gut microbiota.
Assuntos
Bacteroides/fisiologia , Grão Comestível/metabolismo , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Proteínas de Membrana/fisiologia , Polissacarídeos/metabolismo , beta-Glucanas/metabolismo , Bacteroides/genética , Bacteroides/metabolismo , Metabolismo dos Carboidratos/fisiologia , Sequência de Carboidratos , Fibras na Dieta/metabolismo , Microbioma Gastrointestinal/fisiologia , Regulação Bacteriana da Expressão Gênica , Loci Gênicos , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Humanos , Proteínas de Membrana/metabolismoRESUMO
Carbohydrate-active enzymes (CAZymes) are central to the biosynthesis and modification of the plant cell wall. An ancient clade of bifunctional plant endo-glucanases (EG16 members) was recently revealed and proposed to represent a transitional group uniting plant xyloglucan endo-transglycosylase/hydrolase (XTH) gene products and bacterial mixed-linkage endo-glucanases in the phylogeny of glycoside hydrolase family 16 (GH16). To gain broader insights into the distribution and frequency of EG16 and other GH16 members in plants, the PHYTOZOME, PLAZA, NCBI and 1000 PLANTS databases were mined to build a comprehensive census among 1289 species, spanning the broad phylogenetic diversity of multiple algae through recent plant lineages. EG16, newly identified EG16-2 and XTH members appeared first in the green algae. Extant EG16 members represent the early adoption of the ß-jellyroll protein scaffold from a bacterial or early-lineage eukaryotic GH16 gene, which is characterized by loop deletion and extension of the N terminus (in EG16-2 members) or C terminus (in XTH members). Maximum-likelihood phylogenetic analysis of EG16 and EG16-2 sequences are directly concordant with contemporary estimates of plant evolution. The lack of expansion of EG16 members into multi-gene families across green plants may point to a core metabolic role under tight control, in contrast to XTH genes that have undergone the extensive duplications typical of cell-wall CAZymes. The present census will underpin future studies to elucidate the physiological role of EG16 members across plant species, and serve as roadmap for delineating the closely related EG16 and XTH gene products in bioinformatic analyses of emerging genomes and transcriptomes.
Assuntos
Celulase/genética , Genoma de Planta/genética , Glicosídeo Hidrolases/genética , Glicosiltransferases/genética , Plantas/enzimologia , Evolução Molecular , Filogenia , Plantas/genéticaRESUMO
The carbohydrate-rich coating of human tissues and cells provide a first point of contact for colonizing and invading bacteria. Commensurate with N-glycosylation being an abundant form of protein glycosylation that has critical functional roles in the host, some host-adapted bacteria possess the machinery to process N-linked glycans. The human pathogen Streptococcus pneumoniae depolymerizes complex N-glycans with enzymes that sequentially trim a complex N-glycan down to the Man3GlcNAc2 core prior to the release of the glycan from the protein by endo-ß-N-acetylglucosaminidase (EndoD), which cleaves between the two GlcNAc residues. Here we examine the capacity of S. pneumoniae to process high-mannose N-glycans and transport the products. Through biochemical and structural analyses we demonstrate that S. pneumoniae also possesses an α-(1,2)-mannosidase (SpGH92). This enzyme has the ability to trim the terminal α-(1,2)-linked mannose residues of high-mannose N-glycans to generate Man5GlcNAc2. Through this activity SpGH92 is able to produce a substrate for EndoD, which is not active on high-mannose glycans with α-(1,2)-linked mannose residues. Binding studies and X-ray crystallography show that NgtS, the solute binding protein of an ABC transporter (ABCNG), is able to bind Man5GlcNAc, a product of EndoD activity, with high affinity. Finally, we evaluated the contribution of EndoD and ABCNG to growth of S. pneumoniae on a model N-glycosylated glycoprotein, and the contribution of these enzymes and SpGH92 to virulence in a mouse model. We found that both EndoD and ABCNG contribute to growth of S. pneumoniae, but that only SpGH92 and EndoD contribute to virulence. Therefore, N-glycan processing, but not transport of the released glycan, is required for full virulence in S. pneumoniae. To conclude, we synthesize our findings into a model of N-glycan processing by S. pneumoniae in which both complex and high-mannose N-glycans are targeted, and in which the two arms of this degradation pathway converge at ABCNG.