RESUMO
Cytokinins (CKs) are a class of growth-promoting signaling molecules that affect multiple cellular and developmental processes. These phytohormones are well studied in plants, but their presence continues to be uncovered in organisms spanning all kingdoms, which poses new questions about their roles and functions outside of plant systems. Cytokinin production can be initiated by one of two different biosynthetic enzymes, adenylate isopentenyltransfases (IPTs) or tRNA isopentenyltransferases (tRNA-IPTs). In this study, the social amoeba, Dictyostelium discoideum, was used to study the role of CKs by generating deletion and overexpression strains of its single adenylate-IPT gene, iptA. The life cycle of D. discoideum is unique and possesses both single- and multicellular stages. Vegetative amoebae grow and divide while food resources are plentiful, and multicellular development is initiated upon starvation, which includes distinct life cycle stages. CKs are produced in D. discoideum throughout its life cycle and their functions have been well studied during the later stages of multicellular development of D. discoideum. To investigate potential expanded roles of CKs, this study focused on vegetative growth and early developmental stages. We found that iptA-deficiency results in cytokinesis defects, and both iptA-deficiency and overexpression results in dysregulated tricarboxylic acid (TCA) cycle and amino acid metabolism, as well as increased levels of adenosine monophosphate (AMP). Collectively, these findings extend our understanding of CK function in amoebae, indicating that iptA loss and overexpression alter biological processes during vegetative growth that are distinct from those reported during later development.
Assuntos
Dictyostelium , Dictyostelium/genética , Citocinese , Citocininas/genética , Citocininas/metabolismo , RNA de Transferência/metabolismo , Aminoácidos/metabolismoRESUMO
Ranaviruses are pathogens associated with the decline of amphibian populations across much of their distribution. In North America, frog virus 3 (FV3) is a widely distributed pathogen with wild populations of amphibians harboring different lineages and putative recombinants between FV3 and common midwife toad virus (CMTV). These recombinants have higher pathogenicity, and CMTV-derived genes associated with virulence are reported in wild strains in Canada. However, while FV3 is linked to amphibian die-offs in North America, CMTVs have been reported only in commercial frog farms in North America. We sequenced complete genomes of 18 FV3 isolates from three amphibian species to characterize genetic diversity of the lineages in Canada and infer possible recombinant regions. The 18 FV3 isolates displayed different signals of recombination, varying from none to interspersed recombination with previously isolated CMTV-like viruses. In general, most recombination breakpoints were located within open reading frames (ORFs), generating new ORFs and proteins that were a mixture between FV3 and CMTV. A combined spatial and temporal phylogeny suggests the presence of the FV3 lineage in Canada is relatively contemporary (<100 years), corroborating the hypothesis that both CMTV- and FV3-like viruses spread to North America when the international commercial amphibian trade started. Our results highlight the importance of pathogen surveillance and viral dynamics using full genomes to more clearly understand the mechanisms of disease origin and spread.IMPORTANCE Amphibian populations are declining worldwide, and these declines have been linked to a number of anthropogenic factors, including disease. Among the pathogens associated with amphibian mortality, ranaviruses have caused massive die-offs across continents. In North America, frog virus 3 (FV3) is a widespread ranavirus that can infect wild and captive amphibians. In this study, we sequenced full FV3 genomes isolated from frogs in Canada. We report widespread recombination between FV3 and common midwife toad virus (CMTV). Phylogenies indicate a recent origin for FV3 in Canada, possibly as a result of international amphibian trade.
Assuntos
Infecções por Vírus de DNA/epidemiologia , Infecções por Vírus de DNA/virologia , Genoma Viral , Ranavirus/classificação , Ranavirus/genética , Recombinação Genética , Anfíbios/virologia , Animais , Canadá/epidemiologia , Evolução Molecular , Fases de Leitura Aberta , Filogenia , PrevalênciaRESUMO
Frog virus 3 (FV3) and FV3-like ranaviruses can infect a variety of cold-blooded aquatic species and present a primary threat to amphibians across the globe. Previous studies of FV3-like viruses have largely investigated higher-level phylogenetic distinctions of these pathogens via portions of the conserved major capsid protein (MCP), and the putative virulence gene vIF-2α. Few studies, however, have investigated the spatial distribution of FV3 variants at the population level3-data that can be used to further understand the spatial epidemiology of this disease. In this study, we sequenced the MCP and vIF-2α of 127 FV3-positive amphibians sampled from Canadian water bodies in Ontario, northeastern Alberta, and southern Northwest Territories to explore whether intraspecific genetic variation exists within FV3. There was a lack of variation at the 2 markers across these regions, suggesting that there is a lack of FV3 sequence diversity in Canada, which may hint at a single source of infection that has spread. However, an undocumented variant termed Wood Buffalo ranavirus (WBRV) was detected in samples from 3 sites in Alberta and Northwest Territories that clustered within the FV3-like lineage with 99.3% sequence homology for MCP. For vIF-2α, all sequences were the expected truncated variant except for 6 samples in Ontario. These latter sequences were suggestive of recombination with common midwife toad virus (CMTV). The lack of variation suggests that higher-resolution genome analyses will be required to further explore the spatial spread and intraspecific variation of the disease.
Assuntos
Infecções por Vírus de DNA , Ranavirus , Anfíbios , Animais , Canadá , FilogeniaRESUMO
Charcot-Marie-Tooth disease type 1A (CMT1A) and hereditary neuropathy with liability to pressure palsies (HNPP) represent the most common heritable neuromuscular disorders. Molecular diagnostics of CMT1A/HNPP diseases confirm clinical diagnosis, but their value is limited to the clinical course and prognosis. However, no biomarkers of CMT1A/HNPP have been identified. We decided to explore if the LITAF/SIMPLE gene shared a functional link to the PMP22 gene, whose duplication or deletion results in CMT1A and HNPP, respectively. By studying a large cohort of CMT1A/HNPP-affected patients, we found that the LITAF I92V sequence variant predisposes patients to an earlier age of onset of both the CMT1A and HNPP diseases. Using cell transfection experiments, we showed that the LITAF I92V sequence variant partially mislocalizes to the mitochondria in contrast to wild-type LITAF which localizes to the late endosome/lysosomes and is associated with a tendency for PMP22 to accumulate in the cells. Overall, this study shows that the I92V LITAF sequence variant would be a good candidate for a biomarker in the case of the CMT1A/HNPP disorders.
Assuntos
Artrogripose/genética , Doença de Charcot-Marie-Tooth/genética , Neuropatia Hereditária Motora e Sensorial/genética , Proteínas Nucleares/genética , Deleção de Sequência , Fatores de Transcrição/genética , Idade de Início , Animais , Artrogripose/complicações , Artrogripose/diagnóstico , Artrogripose/epidemiologia , Biomarcadores , Células Cultivadas , Doença de Charcot-Marie-Tooth/complicações , Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/epidemiologia , Chlorocebus aethiops , Feminino , Predisposição Genética para Doença , Neuropatia Hereditária Motora e Sensorial/complicações , Neuropatia Hereditária Motora e Sensorial/diagnóstico , Neuropatia Hereditária Motora e Sensorial/epidemiologia , Humanos , Masculino , Mitocôndrias/metabolismo , Proteínas da Mielina/metabolismoRESUMO
Iridoviruses are a family of large double-stranded DNA (dsDNA) viruses that are composed of 5 genera, including the Lymphocystivirus, Ranavirus, Megalocytivirus, Iridovirus, and Chloriridovirus genera. The frog virus 3 (FV3) 75L gene is a nonessential gene that is highly conserved throughout the members of the Ranavirus genus but is not found in other iridoviruses. FV3 75L shows high sequence similarity to a conserved domain found in the C terminus of LITAF, a small cellular protein with unknown function. Here we show that FV3 75L localizes to early endosomes, while LITAF localizes to late endosomes/lysosomes. Interestingly, when FV3 75L and LITAF are cotransfected into cells, LITAF can alter the subcellular localization of FV3 75L to late endosomes/lysosomes, where FV3 75L then colocalizes with LITAF. In addition, we demonstrated that virally produced 75L colocalizes with LITAF. We confirmed a physical interaction between LITAF and FV3 75L but found that this interaction was not mediated by two PPXY motifs in the N terminus of LITAF. Mutation of two PPXY motifs in LITAF did not affect the colocalization of LITAF and FV3 75L but did change the location of the two proteins from late endosomes/lysosomes to early endosomes.
Assuntos
Endossomos/metabolismo , Interações Hospedeiro-Patógeno , Mapeamento de Interação de Proteínas , Ranavirus/patogenicidade , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Humanos , Dados de Sequência Molecular , Proteínas Nucleares , Ligação Proteica , Transporte Proteico , Ranavirus/fisiologia , Homologia de Sequência de Aminoácidos , Fatores de TranscriçãoRESUMO
Frog virus 3 (FV3) is the type species of the genus Ranavirus, family Iridoviridae. The genome of FV3 is 105,903 bases in length and encodes 97 open reading frames (ORFs). The FV3 ORF 97R contains a B-cell lymphoma 2 (Bcl-2) homology 1 (BH1) domain and has sequence similarity to the myeloid cell leukemia-1 (Mcl-1) protein, suggesting a potential role in apoptosis. To begin to understand the role of 97R, we characterized 97R through immunofluorescence and mutagenesis. Here we demonstrated that 97R localized to the endoplasmic reticulum (ER) at 24 h posttransfection. However, at 35 h posttransfection, 97R localized to the ER but also began to form concentrated pockets continuous with the nuclear membrane. After 48 h posttransfection, 97R was still localized to the ER, but we began to observe the ER and the outer nuclear membrane invaginating into the nucleus. To further explore 97R targeting to the ER, we created a series of C-terminal transmembrane domain deletion mutants. We found that deletion of 29 amino acids from the C terminus of 97R abolished localization to the ER. In contrast, deletion of 12 amino acids from the C terminus of 97R did not affect 97R localization to the ER. In addition, a hybrid protein containing the 97R C-terminal 33 amino acids was similarly targeted to the ER. These data indicate that the C-terminal 33 amino acids of 97R are necessary and sufficient for ER targeting.
Assuntos
Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Interações Hospedeiro-Patógeno , Ranavirus/fisiologia , Proteínas Virais/metabolismo , Replicação Viral , Animais , Linhagem Celular , Análise Mutacional de DNA , Retículo Endoplasmático/química , Humanos , Microscopia de Fluorescência , Transporte Proteico , Deleção de SequênciaRESUMO
BACKGROUND: Frog virus 3 (FV3) is the type species of the genus Ranavirus, and in the past few decades, FV3 infections have resulted in considerable morbidity and mortality in a range of wild and cultivated amphibian species in the Americas, Europe, and Asia. The reasons for the pathogenicity of FV3 are not well understood. FINDINGS: We investigated three FV3 isolates designated SSME, wt-FV3, and aza-Cr, and reported that our wt-FV3 and aza-Cr strains showed similar levels of virulence, while SSME was the least virulent in an in vivo study with Lithiobates pipiens tadpoles. Using 454 GS-FLX sequencing technology, we sequenced SSME and compared it to the published wt-FV3 genome. SSME had multiple amino acid deletions in ORFs 49/50L, 65L, 66L, and 87L, which may explain its reduced virulence. We also investigated repeat regions and found that repeat copy number differed between isolates, with only one group of 3 isolates and 1 pair of isolates being identical at all 3 locations. CONCLUSIONS: In this study we have shown that genetic variability is present between closely related FV3 isolates, both in terms of deletions/insertions, and even more so at select repeat locations. These genomic areas with deletions/insertions may represent regions that affect virulence, and therefore require investigation. Furthermore, we have identified repeat regions that may prove useful in future phylogeographical tracking and identification of ranaviral strains across different environmental regions.
Assuntos
DNA Viral/química , DNA Viral/genética , Variação Genética , Genoma Viral , Ranavirus/genética , Ranavirus/patogenicidade , Animais , Infecções por Vírus de DNA/patologia , Infecções por Vírus de DNA/veterinária , Larva/virologia , Dados de Sequência Molecular , Rana pipiens/virologia , Ranavirus/classificação , Ranavirus/isolamento & purificação , Análise de Sequência de DNA , Deleção de Sequência , Estados Unidos , Proteínas Virais/genética , VirulênciaRESUMO
Cytokinins (CKs) are a group of N6-substituted signaling molecules whose biosynthesis and metabolism have been documented in all kingdoms of life, including vertebrates. While their biological relevance in vertebrate systems continues to be elucidated, they have broadly been documented with therapeutic effects in exogenous applications. In this study, we evaluated the virostatic potential of four types of CKs including, N6-isopentenyladenine (iP), N6-isopentenyladenosine (iPR), N6-isopentenyladenosine-5'monophosphate (iPMP), and 2-methylthiol-N6-isopentenyladenosine (2MeSiPR) against the ranavirus type species, frog virus 3 (FV3). Following concurrent treatment and infection, iP and iPR reduced viral replication by 33.8% and 59.6%, respectively, in plaque formation assays. A decrease in viral replication was also observed when CK exposure was limited to 12 h prior to infection, where iP and iPR reduced viral replication by 31% and 23.75%, respectively. Treatment with iP and iPR was also marked by 48% and 60% decreases in viral load over 72 h, respectively, as measured in single step growth curves. Plaque morphology was altered in vitro, as iP and iPR treatment increased plaque area by 83% and 112% with lytic zone formation also becoming more prevalent in corresponding treatments. Treatment with iPMP and 2MeSiPR resulted in no effect on viral kinetics in vitro. The results of this study are the first to provide evidence of CK antiviral activity against a DNA virus and highlight the importance of their structure for therapeutic investigations.
Assuntos
Antivirais , Citocininas , Ranavirus , Ensaio de Placa Viral , Replicação Viral , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacologia , Ranavirus/fisiologia , Ranavirus/efeitos dos fármacos , Citocininas/farmacologia , Citocininas/metabolismo , Linhagem CelularRESUMO
Members of the Iridoviridae family, genus Ranavirus, represent a group of globally emerging pathogens of ecological and economic importance. In 2017, an amphibian die-off of wood frogs (Rana sylvatica) and boreal chorus frogs (Pseudacris maculata) was reported in Wood Buffalo National Park, Canada. Isolation and complete genomic sequencing of the tissues of a wood frog revealed the presence of a frog virus 3 (FV3)-like isolate, Rana sylvatica ranavirus (RSR), with a genome size of 105,895 base pairs, 97 predicted open reading frames (ORFs) bearing sequence similarity to FV3 (99.98%) and a FV3-like isolate from a spotted salamander in Maine (SSME; 99.64%). Despite high sequence similarity, RSR had a unique genomic composition containing ORFs specific to either FV3 or SSME. In addition, RSR had a unique 13 amino acid insertion in ORF 49/50L. No differences were found in the in vitro growth kinetics of FV3, SSME, and RSR; however, genomic differences between these isolates were in non-core genes, implicated in nucleic acid metabolism and immune evasion. This study highlights the importance of viral isolation and complete genomic analysis as these not only provide information on ranavirus spatial distribution but may elucidate genomic factors contributing to host tropism and pathogenicity.
Assuntos
Infecções por Vírus de DNA , Genoma Viral , Fases de Leitura Aberta , Filogenia , Ranavirus , Ranidae , Animais , Ranavirus/genética , Ranavirus/isolamento & purificação , Ranavirus/classificação , Ranavirus/fisiologia , Ranidae/virologia , Infecções por Vírus de DNA/virologia , Infecções por Vírus de DNA/veterinária , Parques Recreativos , Canadá , DNA Viral/genéticaRESUMO
Lonely guy (LOG) proteins are phosphoribohydrolases (PRHs) that are key cytokinin (CK)-activating enzymes in plant and non-plant CK-producing organisms. During CK biosynthesis, LOGs catalyze the conversion of precursor CK-nucleotides (CK-NTs) to biologically active free base forms. LOG/PRH activity has been detected in bacteria, archaea, algae, and fungi. However, in these organisms, the LOG/PRH activity for CK-NTs and non-CK-NTs (e.g., adenine-NTs) has not been assessed simultaneously, which leaves limited knowledge about the substrate specificity of LOGs. Thus, we performed bioinformatic analyses and a biochemical characterization of a LOG ortholog from Dictyostelium discoideum, a soil-dwelling amoeba, which produces CKs during unicellular growth and multicellular development. We show that DdLog exhibits LOG/PRH activity on two CK-NTs, N 6 -isopentenyladenosine-5'-monophosphate (iPMP) and N 6 -benzyladenosine-5'-monophosphate (BAMP), and on adenosine 5'-monophosphate (AMP) but not on 3', 5'-cyclic adenosine-monophosphate (cAMP). Additionally, there were higher turnover rates for CK-NTs over AMP. Together, these findings confirm that DdLog acts as a CK-activating enzyme; however, in contrast to plant LOGs, it maintains a wider specificity for other substrates (e.g., AMP) reflecting it has maintained its original, non-CK related role even after diversifying into a CK-activating enzyme.
RESUMO
Viruses are obligate intracellular parasites that alter host metabolic machinery to obtain energy and macromolecules that are pivotal for replication. Ranavirus, including the type species of the genus frog virus 3 (FV3), represent an ecologically important group of viruses that infect fish, amphibians, and reptiles. It was established that fatty acid synthesis, glucose, and glutamine metabolism exert roles during iridovirus infections; however, no information exists regarding the role of purine metabolism. In this study, we assessed the impact of exogenously applied purines adenine, adenosine, adenosine 5'-monophosphate (AMP), inosine 5'-monophosphate (IMP), inosine, S-adenosyl-L-homocysteine (SAH), and S-adenosyl-L-methionine (SAM) on FV3 replication. We found that all compounds except for SAH increased FV3 replication in a dose-dependent manner. Of the purines investigated, adenine and adenosine produced the most robust response, increasing FV3 replication by 58% and 51%, respectively. While all compounds except SAH increased FV3 replication, only adenine increased plaque area. This suggests that the stimulatory effect of adenine on FV3 replication is mediated by a mechanism that is at least in part independent from the other compounds investigated. Our results are the first to report a response to exogenously applied purines and may provide insight into the importance of purine metabolism during iridoviral infection.
Assuntos
Ranavirus , Animais , Purinas , Adenina , Adenosina , Inosina , NucleotídeosRESUMO
Cytokinins (CTKs) are a diverse collection of evolutionarily conserved adenine-derived signaling molecules classically studied as phytohormones; however, their roles and production have been less studied in mammalian systems. Skeletal muscles are sensitive to cellular cues such as inflammation and in response, alter their secretome to regulate the muscle stem cell and myofiber niche. Using cultured C2C12 muscle cells, we profiled CTK levels to understand (1) whether CTKs are part of the muscle secretome and (2) whether CTKs are responsive to cellular stress. To induce cellular stress, C2C12 myotubes were treated with lipopolysaccharides (LPS) for 24 h and then media and cell fractions were collected for ultra high-performance liquid chromatography tandem mass spectrometry with electrospray ionization (UHPLC-(ESI+)-HRMS/MS) for metabolomics and CTK profiling. Across LPS-treated and control cells, 11 CTKs were detected in the extracellular space while 6 were detected intracellularly. We found that muscle cells are enriched in isopentenyladenine (iP) species (from free base, riboside to nucleotide forms), and that extracellular levels are increased after LPS treatment. Our study establishes that muscle cells express various forms of CTKs, and that CTK levels are responsive to LPS-induced cell stress, suggesting a role for CTKs in intra- and extracellular signaling of mammalian cells.
Assuntos
Citocininas , Lipopolissacarídeos , Citocininas/química , Lipopolissacarídeos/farmacologia , Adenina/farmacologia , Fibras Musculares EsqueléticasRESUMO
BACKGROUND: Viruses included in the family Iridoviridae are large, icosahedral, dsDNA viruses that are subdivided into 5 genera. Frog virus 3 (FV3) is the type species of the genus Ranavirus and the best studied iridovirus at the molecular level. Typically, antibodies directed against a virus act to neutralize the virus and limit infection. Antibody dependent enhancement occurs when viral antibodies enhance infectivity of the virus rather than neutralize it. RESULTS: Here we show that anti-FV3 serum present at the time of FV3 infection enhances infectivity of the virus in two non-immune teleost cell lines. We found that antibody dependent enhancement of FV3 was dependent on the Fc portion of anti-FV3 antibodies but not related to complement. Furthermore, the presence of anti-FV3 serum during an FV3 infection in a non-immune mammalian cell line resulted in neutralization of the virus. Our results suggest that a cell surface receptor specific to teleost cell lines is responsible for the enhancement. CONCLUSIONS: This report represents the first evidence of antibody dependent enhancement in iridoviruses. The data suggests that anti-FV3 serum can either neutralize or enhance viral infection and that enhancement is related to a novel antibody dependent enhancement pathway found in teleosts that is Fc dependent.
Assuntos
Anticorpos Antivirais/metabolismo , Anticorpos Facilitadores , Ranavirus/fisiologia , Internalização do Vírus , Animais , Anticorpos Neutralizantes/imunologia , Linhagem Celular , Chlorocebus aethiops , Cordados , Fragmentos Fc das Imunoglobulinas/metabolismoRESUMO
BACKGROUND: The diversity of butterfly color patterns can be attributed to a relatively small number of pattern elements that are homologous across Lepidoptera. Although genes involved in patterning some of these elements have been identified, the development of several major elements remains poorly understood. To identify genes underlying wing pupal cuticle markings and wing margin color patterns, we examined expression of the candidate transcription factors Engrailed/Invected (En/Inv), Distal-less (Dll), Cubitus interruptus (Ci), and Spalt in two nymphalids: Junonia coenia and Bicyclus anynana. RESULTS: We found that En/Inv, Dll, and Ci mark domains on the J. coenia last-instar forewing disc that closely correspond to the position and shape of pupal cuticle markings. We also found that Spalt demarcates wing margin color patterns in both J. coenia and B. anynana, and that CRISPR/Cas9 deletions in the spalt gene result in reduction and loss of wing margin color patterns in J. coenia. These data demonstrate a role for spalt in promoting wing margin color patterning, in addition to its previously described role in eyespot patterning. CONCLUSION: Our observations support the model that a core set of regulatory genes are redeployed multiple times, and in multiple roles, during butterfly wing pattern development. Of these genes, spalt is of special interest as it plays a dual role in both eyespot and margin color pattern development.
RESUMO
Cytokinins (CKs) are a diverse group of evolutionarily significant growth-regulating molecules. While the CK biosynthesis and signal transduction pathways are the most well-understood in plant systems, these molecules have been identified in all kingdoms of life. This review follows the recent discovery of an expanded CK profile in the social amoeba, Dictyostelium discoideum. A comprehensive review on the present knowledge of CK biosynthesis, signal transduction, and CK-small molecule interactions within members of Dictyostelia will be summarized. In doing so, the utility of social amoebae will be highlighted as a model system for studying the evolution of these hormone-like signaling agents, which will set the stage for future research in this area.
RESUMO
The characterization of the function of conserved viral genes is central to developing a greater understanding of important aspects of viral replication or pathogenesis. A comparative genomic analysis of the iridoviral genomes identified 26 core genes conserved across the family Iridoviridae. Three of those conserved genes have no defined function; these include the homologs of frog virus 3 (FV3) open reading frames (ORFs) 88R, 91R, and 94L. Conserved viral genes that have been previously identified are known to participate in a number of viral activities including: transcriptional regulation, DNA replication/repair/modification/processing, protein modification, and viral structural proteins. To begin to characterize the conserved FV3 ORFs 88R, 91R, and 94L, we cloned the genes and determined their intracellular localization. We demonstrated that 88R localizes to the cytoplasm of the cell while 91R localizes to the nucleus and 94L localizes to the endoplasmic reticulum (ER).
Assuntos
Genes Virais , Ranavirus/genética , Proteínas Virais/genética , Linhagem Celular , Núcleo Celular/virologia , Citoplasma/virologia , Replicação do DNA/genética , Retículo Endoplasmático/virologia , Imunofluorescência , Regulação Viral da Expressão Gênica , Fases de Leitura Aberta , Análise de Sequência de DNA , Replicação ViralRESUMO
Cytokinins (CKs) are a family of evolutionarily conserved growth regulating hormones. While CKs are well-characterized in plant systems, these N6-substituted adenine derivatives are found in a variety of organisms beyond plants, including bacteria, fungi, mammals, and the social amoeba, Dictyostelium discoideum. Within Dictyostelium, CKs have only been studied in the late developmental stages of the life cycle, where they promote spore encapsulation and dormancy. In this study, we used ultra high-performance liquid chromatography-positive electrospray ionization-high resolution tandem mass spectrometry (UHPLC-(ESI+)-HRMS/MS) to profile CKs during the Dictyostelium life cycle: growth, aggregation, mound, slug, fruiting body, and germination. Comprehensive profiling revealed that Dictyostelium produces 6 CK forms (cis-Zeatin (cZ), discadenine (DA), N6-isopentenyladenine (iP), N6-isopentenyladenine-9-riboside (iPR), N6-isopentenyladenine-9-riboside-5' phosphate (iPRP), and 2-methylthio-N6-isopentenyladenine (2MeSiP)) in varying abundance across the sampled life cycle stages, thus laying the foundation for the CK biosynthesis pathway to be defined in this organism. Interestingly, iP-type CKs were the most dominant CK analytes detected during growth and aggregation. Exogenous treatment of AX3 cells with various CK types revealed that iP was the only CK to promote the proliferation of cells in culture. In support of previous studies, metabolomics data revealed that DA is one of the most significantly upregulated small molecules during Dictyostelium development, and our data indicates that total CK levels are highest during germination. While much remains to be explored in Dictyostelium, this research offers new insight into the nature of CK biosynthesis, secretion, and function during Dictyostelium growth, development, and spore germination.
Assuntos
Citocininas/metabolismo , Dictyostelium/crescimento & desenvolvimento , Metabolômica/métodos , Linhagem Celular , Proliferação de Células , Cromatografia Líquida de Alta Pressão , Dictyostelium/metabolismo , Estágios do Ciclo de Vida , Espectrometria de Massas por Ionização por Electrospray , Esporos de Protozoários/crescimento & desenvolvimento , Esporos de Protozoários/metabolismo , Regulação para CimaRESUMO
Frog virus 3 (FV3) is a large DNA virus that is the prototypic member of the family Iridoviridae. To examine levels of FV3 gene expression we generated a polyclonal antibody against the FV3 protein 75L. Following a FV3 infection in fathead minnow (FHM) cells 75L was found in vesicles throughout the cytoplasm as early as 3 hours post-infection. While 75L expressed strongly in FHM cells, our findings revealed no 75L expression in mammalian cells lines despite evidence of a FV3 infection. One explanation for the lack of gene expression in mammalian cell lines may be inefficient codon usage. As a result, 75L was codon optimized and transfection of the codon optimized construct resulted in detectable expression in mammalian cells. Therefore, although FV3 can infect and replicate in mammalian cell lines, the virus may not express its full complement of genes due to inefficient codon usage in mammalian species.
Assuntos
Linhagem Celular , Cyprinidae/metabolismo , Cyprinidae/virologia , Expressão Gênica , Mamíferos/metabolismo , Mamíferos/virologia , Ranavirus/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Chlorocebus aethiops , Códon/genética , Cyprinidae/genética , Células HeLa , Humanos , Mamíferos/genética , Dados de Sequência Molecular , Ranavirus/metabolismoRESUMO
BACKGROUND: Members of the family Iridoviridae can cause severe diseases resulting in significant economic and environmental losses. Very little is known about how iridoviruses cause disease in their host. In the present study, we describe the re-analysis of the Iridoviridae family of complex DNA viruses using a variety of comparative genomic tools to yield a greater consensus among the annotated sequences of its members. RESULTS: A series of genomic sequence comparisons were made among, and between the Ranavirus and Megalocytivirus genera in order to identify novel conserved ORFs. Of these two genera, the Megalocytivirus genomes required the greatest number of altered annotations. Prior to our re-analysis, the Megalocytivirus species orange-spotted grouper iridovirus and rock bream iridovirus shared 99% sequence identity, but only 82 out of 118 potential ORFs were annotated; in contrast, we predict that these species share an identical complement of genes. These annotation changes allowed the redefinition of the group of core genes shared by all iridoviruses. Seven new core genes were identified, bringing the total number to 26. CONCLUSION: Our re-analysis of genomes within the Iridoviridae family provides a unifying framework to understand the biology of these viruses. Further re-defining the core set of iridovirus genes will continue to lead us to a better understanding of the phylogenetic relationships between individual iridoviruses as well as giving us a much deeper understanding of iridovirus replication. In addition, this analysis will provide a better framework for characterizing and annotating currently unclassified iridoviruses.
Assuntos
Genes Virais/genética , Genoma Viral , Iridoviridae/classificação , Iridoviridae/genéticaRESUMO
To understand the molecular events responsible for morphological change requires the ability to examine gene expression in a wide range of organisms in addition to model systems to determine how the differences in gene expression correlate with phenotypic differences. There are approximately 12,000 species of butterflies, most, with distinct patterns on their wings. The most important tool for studying gene expression in butterflies is confocal imaging of butterfly tissue by indirect immunofluorescence using either cross-reactive antibodies from closely related species such as Drosophila or developing butterfly-specific antibodies. In this report, we describe how indirect immunofluorescence protocols can be used to visualize protein expression patterns on the butterfly wing imaginal disc and butterfly embryo.