Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Can J Physiol Pharmacol ; 102(8): 452-464, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38266237

RESUMO

The lifetime risk of heart failure (HF) is comparable in men and women; nevertheless, disparities exist in our understanding of how HF differs between sexes. Several differences in cardiac physiology exist between men and women including the propensity to develop specific HF phenotypes. Men are more likely to be diagnosed with HF failure with reduced ejection fraction, while women have a greater propensity to develop HF with preserved ejection fraction. The mechanisms responsible for these differences remain unclear. Post-translational modifications (PTMs) of myofilament proteins likely contribute to these sex-specific propensities. The role of PTMs in heart disease is an expanding field with immense potential therapeutic targets. However, numerous PTMs remain underexplored, particularly in the context of the female heart. Estrogen, a key gonadal hormone, cardioprotective in pre-menopausal women and its loss with menopause likely contributes to disease in aging women. However, how estrogen regulates PTMs to contribute to HF development is not fully clear. This review outlines key sex differences in HF along with characterizing the contributions of novel myocardial PTMs in cardiac physiology and their regulation by estrogen. Collectively, we highlight the necessity for further investigation into women's heart health and the distinctive mechanisms distinguishing women from men.


Assuntos
Estrogênios , Insuficiência Cardíaca , Miocárdio , Processamento de Proteína Pós-Traducional , Humanos , Estrogênios/metabolismo , Feminino , Miocárdio/metabolismo , Animais , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Caracteres Sexuais , Coração/efeitos dos fármacos , Coração/fisiologia , Fatores Sexuais
2.
Am J Physiol Heart Circ Physiol ; 325(2): H385-H397, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37389951

RESUMO

Fibroblasts intricately organize and regulate the extracellular matrix (ECM) in cardiac health and disease. Excess deposition of ECM proteins causes fibrosis, resulting in disrupted signaling conduction and contributing to the development of arrhythmias and impaired cardiac function. Fibrosis is causally involved in cardiac failure in the left ventricle (LV). Fibrosis likely occurs in right ventricle (RV) failure, yet mechanisms remain unclear. Indeed, RV fibrosis is poorly understood with mechanisms often extrapolated from the LV to the RV. However, emerging data suggest that the LV and RV are distinct cardiac chambers and differ in regulation of the ECM and response to fibrotic stimuli. In the present review, we will discuss differences in ECM regulation in the healthy RV and LV. We will discuss the importance of fibrosis in the development of RV disease in pressure overload, inflammation, and aging. During this discussion, we will highlight mechanisms of fibrosis with respect to the synthesis of ECM proteins while acknowledging the importance of considering collagen breakdown. We will also discuss current knowledge of antifibrotic therapies in the RV and the need for additional research to help delineate the shared and distinct mechanisms of RV and LV fibrosis.


Assuntos
Insuficiência Cardíaca , Disfunção Ventricular Direita , Humanos , Ventrículos do Coração , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrose , Função Ventricular Direita
3.
Am J Physiol Heart Circ Physiol ; 325(2): H278-H292, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37389952

RESUMO

Right ventricular (RV) function is the strongest predictor of survival in age-related heart failure as well as other clinical contexts in which aging populations suffer significant morbidity and mortality. However, despite the significance of maintaining RV function with age and disease, mechanisms of RV failure remain poorly understood and no RV-directed therapies exist. The antidiabetic drug and AMP-activated protein kinase (AMPK) activator metformin protects against left ventricular dysfunction, suggesting cardioprotective properties may translate to the RV. Here, we aimed to understand the impact of advanced age on pulmonary hypertension (PH)-induced right ventricular dysfunction. We further aimed to test whether metformin is cardioprotective in the RV and whether the protection afforded by metformin requires cardiac AMPK. We used a murine model of PH by exposing adult (4-6 mo) and aged (18 mo) male and female mice to hypobaric hypoxia (HH) for 4 wk. Cardiopulmonary remodeling was exacerbated in aged mice compared with adult mice as evidenced by elevated RV weight and impaired RV systolic function. Metformin attenuated HH-induced RV dysfunction but only in adult male mice. Metformin still protected the adult male RV even in the absence of cardiac AMPK. Together, we suggest that aging exacerbates PH-induced RV remodeling and that metformin may represent a therapeutic option for this disease in a sex- and age-dependent manner, but in an AMPK-independent manner. Ongoing efforts are aimed at elucidating the molecular basis for RV remodeling as well as delineating the mechanisms of cardioprotection provided by metformin in the absence of cardiac AMPK.NEW & NOTEWORTHY Right ventricular (RV) function predicts survival in age-related disease, yet mechanisms of RV failure are unclear. We show that aged mice undergo exacerbated RV remodeling compared with young. We tested the AMPK activator metformin to improve RV function and show that metformin attenuates RV remodeling only in adult male mice via a mechanism that does not require cardiac AMPK. Metformin is therapeutic for RV dysfunction in an age- and sex-specific manner independent of cardiac AMPK.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Metformina , Disfunção Ventricular Direita , Masculino , Camundongos , Feminino , Animais , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/prevenção & controle , Metformina/farmacologia , Proteínas Quinases Ativadas por AMP , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/prevenção & controle , Disfunção Ventricular Direita/tratamento farmacológico , Função Ventricular Direita , Remodelação Ventricular , Modelos Animais de Doenças
4.
Exerc Sport Sci Rev ; 50(3): 137-144, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35522248

RESUMO

Aging induces physiological and molecular changes in the heart that increase the risk for heart disease. Several of these changes are targetable by exercise. We hypothesize that the mechanisms by which exercise improves cardiac function in the aged heart differ from those in the young exercised heart.


Assuntos
Miocárdio , Remodelação Ventricular , Idoso , Envelhecimento/fisiologia , Coração , Humanos , Remodelação Ventricular/fisiologia
5.
J Circadian Rhythms ; 18: 7, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33384723

RESUMO

Critical biological processes are under control of the circadian clock. Disruption of this clock, e.g. during aging, results in increased risk for development of chronic disease. Exercise is a protective intervention that elicits changes in both age and circadian pathologies, yet its role in regulating circadian gene expression in peripheral tissues is unknown. We hypothesized that voluntary wheel running would restore disrupted circadian rhythm in aged mice. We analyzed wheel running patterns and expression of circadian regulators in male and female C57Bl/6J mice in adult (~4 months) and old (~18 months) ages. As expected, young female mice ran further than male mice, and old mice ran significantly less than young mice. Older mice of both sexes had a delayed start time in activity which likely points to a disrupted diurnal running pattern and circadian disruption. Voluntary wheel running rescued some circadian dysfunction in older females. This effect was not present in older males, and whether this was due to low wheel running distance or circadian output is not clear and warrants a future study. Overall, we show that voluntary wheel running can rescue some circadian dysfunction in older female but not male mice; and these changes are tissue dependent. While voluntary running was not sufficient to fully rescue age-related changes in circadian rhythm, ongoing studies will determine if forced exercise (e.g. treadmill) and/or chrono-timed exercise can improve age-related cardiovascular, skeletal muscle, and circadian dysfunction.

6.
Medicina (Kaunas) ; 56(9)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899136

RESUMO

Background and Objective: Skeletal muscle is critical for overall health and predicts quality of life in several chronic diseases, thus quantification of muscle mass and composition is necessary to understand how interventions promote changes in muscle quality. The purpose of this investigation was to quantify changes in muscle mass and composition in two distinct pre-clinical models of changes in muscle quality using a clinical dual X-ray absorptiometry (DEXA), validated for use in mice. Materials and Methods: Adult C57Bl6 male mice were given running wheels (RUN; muscle hypertrophy) or placed in hypobaric hypoxia (HH; muscle atrophy) for four weeks. Animals received weekly DEXA and terminal collection of muscle hind limb complex (HLC) and quadriceps weights and signaling for molecular regulators of muscle mass and composition. Results: HH decreased total HLC muscle mass with no changes in muscle composition. RUN induced loss of fat mass in both the quadriceps and HLC. Molecular mediators of atrophy were upregulated in HH while stimulators of muscle growth were higher in RUN. These changes in muscle mass and composition were quantified by a clinical DEXA, which we described and validated for use in pre-clinical models. Conclusions: RUN improves muscle composition while HH promotes muscle atrophy, though changes in composition in hypoxia remain unclear. Use of the widely available clinical DEXA for use in mice enhances translational research capacity to understand the mechanisms by which atrophy and hypertrophy promote skeletal muscle and overall health.


Assuntos
Composição Corporal , Qualidade de Vida , Absorciometria de Fóton , Animais , Hipóxia , Masculino , Camundongos , Músculo Esquelético/diagnóstico por imagem
7.
J Mol Cell Cardiol ; 126: 70-76, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30458169

RESUMO

Heart failure (HF) is a significant public health problem and a disease with high 5-year mortality. Although age is the primary risk factor for development of HF, it is a disease which impacts patients of all ages. Historically, HF has been studied as a one-size fits all strategy- with the majority of both clinical and basic science investigations employing adult male subjects or adult male pre-clinical animal models. We postulate that inclusion of biological variables in HF studies is necessary to improve our understanding of mechanisms of HF and improve outcomes. In this review, we will discuss age-specific differences in HF patients, particularly focusing on the pediatric and geriatric age groups. In addition, we will also discuss the biological variable of sex. Characterizing and understanding the mechanistic differences in these distinct HF populations can provide insights that will benefit and personalize therapeutic interventions. Further, we propose that future investigations into the cellular mechanisms involved in the developing and juvenile heart may provide valuable insights for targets that would be beneficial in aging patients.


Assuntos
Geriatria , Insuficiência Cardíaca/patologia , Pediatria , Envelhecimento/fisiologia , Coração/crescimento & desenvolvimento , Humanos , Remodelação Ventricular
8.
Am J Physiol Renal Physiol ; 317(5): F1087-F1093, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31461350

RESUMO

The mammalian circadian clock governs physiological, endocrine, and metabolic responses coordinated in a 24-h rhythmic pattern by the suprachiasmatic nucleus (SCN) of the anterior hypothalamus. The SCN also dictates circadian rhythms in peripheral tissues like the kidney. The kidney has several important physiological functions, including removing waste and filtering the blood and regulating fluid volume, blood osmolarity, blood pressure, and Ca2+ metabolism, all of which are under tight control of the molecular/circadian clock. Normal aging has a profound influence on renal function, central and peripheral circadian rhythms, and the sleep-wake cycle. Disrupted circadian rhythms in the kidney as a result of increased age likely contribute to adverse health outcomes such as nocturia, hypertension, and increased risk for stroke, cardiovascular disease, and end organ failure. Regular physical activity improves circadian misalignment in both young and old mammals, although the precise mechanisms for this protection remain poorly described. Recent advances in the heart and skeletal muscle literature suggest that regular endurance exercise entrains peripheral clocks, and we propose that similar beneficial adaptations occur in the kidney through regulation of renal blood flow and fluid balance.


Assuntos
Relógios Biológicos/fisiologia , Exercício Físico/fisiologia , Rim/fisiologia , Adaptação Fisiológica , Humanos , Músculo Esquelético/fisiologia , Equilíbrio Hidroeletrolítico
9.
Am J Physiol Lung Cell Mol Physiol ; 310(6): L542-50, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26747780

RESUMO

Interleukin-18 (IL-18), a proinflammatory cytokine, has been implicated in pathologic left ventricular hypertrophy and is elevated in plasma of heart failure patients. However, IL-18 blockade strategies have been conflicting. The purpose of these experiments was to determine whether genetic ablation of IL-18 would protect mice against hypobaric hypoxia (HH)-induced right ventricular (RV) hypertrophy, a condition in which chamber-specific inflammation is prominent. We hypothesized that IL-18 knockout (KO) mice would be protected while wild-type (WT) mice would demonstrate RV hypertrophy in response to HH exposure. KO and WT mice were exposed to HH for 7 wk, and control mice were exposed to normoxic ambient air. Following echocardiography, the RV was dissected and flash-frozen for biochemical analyses. HH exposure increased IL-18 mRNA (P = 0.08) in RV from WT mice. Genetic ablation of IL-18 mildly attenuated RV hypertrophy as assessed by myocyte size. However, IL-18 KO mice were not protected against HH-induced organ-level remodeling, as evidenced by higher RV weights, elevated RV systolic pressure, and increased RV anterior wall thickness compared with normoxic KO mice. These RV changes were similar to those seen in HH-exposed WT mice. Compensatory upregulation of other proinflammatory cytokines IL-2 and stromal cell-derived factor-1 was seen in the HH-KO animals, suggesting that activation of parallel inflammatory pathways might mitigate the effect of IL-18 KO. These data suggest targeted blockade of IL-18 alone is not a viable therapeutic strategy in this model.


Assuntos
Hipertrofia Ventricular Direita/genética , Hipóxia/complicações , Interleucina-18/genética , Animais , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Colágeno/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Expressão Gênica , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertrofia Ventricular Direita/etiologia , Hipertrofia Ventricular Direita/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Interleucina-18/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/metabolismo , Miocárdio/patologia , Fosforilação , Processamento de Proteína Pós-Traducional , Remodelação Ventricular
10.
Am J Physiol Lung Cell Mol Physiol ; 308(2): L158-67, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25416385

RESUMO

Right ventricular (RV) function is a key determinant of survival in patients with both RV and left ventricular (LV) failure, yet the mechanisms of RV failure are poorly understood. Recent studies suggest cardiac metabolism is altered in RV failure in pulmonary hypertension (PH). Accordingly, we assessed mitochondrial content, dynamics, and function in hearts from neonatal calves exposed to hypobaric hypoxia (HH). This model develops severe PH with concomitant RV hypertrophy, dilation, and dysfunction. After 2 wk of HH, pieces of RV and LV were obtained along with samples from age-matched controls. Comparison with control assesses the effect of hypoxia, whereas comparison between the LV and RV in HH assesses the additional impact of RV overload. Mitochondrial DNA was unchanged in HH, as was mitochondrial content as assessed by electron microscopy. Immunoblotting for electron transport chain subunits revealed a small increase in mitochondrial content in HH in both ventricles. Mitochondrial dynamics were largely unchanged. Activity of individual respiratory chain complexes was reduced (complex I) or unchanged (complex V) in HH. Key enzymes in the glycolysis pathway were upregulated in both HH ventricles, alongside upregulation of hypoxia-inducible factor-1α protein. Importantly, none of the changes in expression or activity were different between ventricles, suggesting the changes are in response to HH and not RV overload. Upregulation of glycolytic modulators without chamber-specific mitochondrial dysfunction suggests that mitochondrial capacity and activity are maintained at the onset of PH, and the early RV dysfunction in this model results from mechanisms independent of the mitochondria.


Assuntos
Bovinos , Modelos Animais de Doenças , Ventrículos do Coração/fisiopatologia , Hipertensão Pulmonar/patologia , Hipertrofia Ventricular Direita/fisiopatologia , Mitocôndrias/metabolismo , Disfunção Ventricular Direita/patologia , Animais , Variações do Número de Cópias de DNA , Complexo I de Transporte de Elétrons/metabolismo , Transportador de Glucose Tipo 4/biossíntese , Insuficiência Cardíaca/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Masculino , Mitocôndrias/genética , Fosfofrutoquinase-1/biossíntese , Proteína Quinase C/biossíntese , Fator A de Crescimento do Endotélio Vascular/biossíntese , Função Ventricular Direita
11.
Am J Physiol Endocrinol Metab ; 307(9): E813-21, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25205819

RESUMO

Increasing mouse litter size [crowded litter (CL)] presumably imposes a transient nutrient stress during suckling and extends lifespan through unknown mechanisms. Chronic calorically restricted and rapamycin-treated mice have decreased DNA synthesis and mTOR complex 1 (mTORC1) signaling but maintained protein synthesis, suggesting maintenance of existing cellular structures. We hypothesized that CL would exhibit similar synthetic and signaling responses to other long-lived models and, by comparing synthesis of new protein to new DNA, that insight may be gained into the potential preservation of existing cellular structures in the CL model. Protein and DNA synthesis was assessed in gastroc complex, heart, and liver of 4- and 7-mo CL mice. We also examined mTORC1 signaling in 3- and 7-mo aged animals. Compared with controls, 4-mo CL had greater DNA synthesis in gastroc complex with no differences in protein synthesis or mTORC1 substrate phosphorylation across tissues. Seven-month CL had less DNA synthesis than controls in heart and greater protein synthesis and mTORC1 substrate phosphorylation across tissues. The increased new protein-to-new DNA synthesis ratio suggests that new proteins are synthesized more so in existing cells at 7 mo, differing from 4 mo, in CL vs. controls. We propose that, in CL, protein synthesis shifts from being directed toward new cells (4 mo) to maintenance of existing cellular structures (7 mo), independently of decreased mTORC1.


Assuntos
Envelhecimento , Tamanho da Ninhada de Vivíparos , Complexos Multiproteicos/metabolismo , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Regulação para Cima , Algoritmos , Animais , Animais Lactentes , Cruzamentos Genéticos , DNA/biossíntese , Regulação para Baixo , Feminino , Coração/crescimento & desenvolvimento , Membro Posterior , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Longevidade , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Fosforilação
13.
J Biol Rhythms ; 38(3): 290-304, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36802963

RESUMO

Circadian misalignment occurs with age, jet lag, and shift work, leading to maladaptive health outcomes including cardiovascular diseases. Despite the strong link between circadian disruption and heart disease, the cardiac circadian clock is poorly understood, prohibiting identification of therapies to restore the broken clock. Exercise is the most cardioprotective intervention identified to date and has been suggested to reset the circadian clock in other peripheral tissues. Here, we tested the hypothesis that conditional deletion of core circadian gene Bmal1 would disrupt cardiac circadian rhythm and function and that this disruption would be ameliorated by exercise. To test this hypothesis, we generated a transgenic mouse with spatial and temporal deletion of Bmal1 only in adult cardiac myocytes (Bmal1 cardiac knockout [cKO]). Bmal1 cKO mice demonstrated cardiac hypertrophy and fibrosis concomitant with impaired systolic function. This pathological cardiac remodeling was not rescued by wheel running. While the molecular mechanisms responsible for the profound cardiac remodeling are unclear, it does not appear to involve activation of the mammalian target of rapamycin (mTOR) signaling or changes in metabolic gene expression. Interestingly, cardiac deletion of Bmal1 disrupted systemic rhythms as evidenced by changes in the onset and phasing of activity in relationship to the light/dark cycle and by decreased periodogram power as measured by core temperature, suggesting cardiac clocks can regulate systemic circadian output. Together, we suggest a critical role for cardiac Bmal1 in regulating both cardiac and systemic circadian rhythm and function. Ongoing experiments will determine how disruption of the circadian clock causes cardiac remodeling in an effort to identify therapeutics to attenuate the maladaptive outcomes of a broken cardiac circadian clock.


Assuntos
Relógios Circadianos , Cardiopatias , Camundongos , Animais , Ritmo Circadiano/genética , Atividade Motora/fisiologia , Relógios Circadianos/genética , Camundongos Transgênicos , Camundongos Knockout , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Mamíferos/metabolismo
14.
J Appl Physiol (1985) ; 135(3): 572-583, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37439235

RESUMO

Cardiovascular disease is an enormous public health problem, particularly in older populations. Exercise is the most potent cardioprotective intervention identified to date, with exercise in the juvenile period potentially imparting greater protection, given the plasticity of the developing heart. To test the hypothesis that voluntary wheel running early in life would be cardioprotective later in life when risk for disease is high, we provided male and female juvenile (3 wk old) mice access to a running wheel for 2 wk. Mice then returned to a home cage to age to adulthood (4-6 mo) before exposure to isoproterenol (ISO) to induce cardiac stress. Cardiac function and remodeling were compared with sedentary control mice, sedentary mice exposed to ISO, and mice that exercised in adulthood immediately before ISO. Early in life activity protected against ISO-induced stress as evidenced by attenuated cardiac mass, myocyte size, and fibrosis compared with sedentary mice exposed to ISO. ISO-induced changes in cardiac function were ameliorated in male mice that engaged in wheel running, with ejection fraction and fractional shortening reversed to control values. Adrenergic receptor expression was downregulated in juvenile male runners. This suppression persisted in adulthood following ISO, providing a putative mechanism by which exercise in the young male heart provides resilience to cardiac stress later in life. Together, we show that activity early in life induces persistent cardiac changes that attenuate ISO-induced stress in adulthood. Identification of the mechanisms by which early in life exercise is protective will yield valuable insights into how exercise is medicine across the life course.NEW & NOTEWORTHY Voluntary wheel running activity early in life induces persistent changes in the heart that attenuate isoproterenol-induced hypertrophy and fibrosis in adulthood. Though the mechanisms of this protection remain incompletely understood, activity-induced downregulation of adrenergic receptor expression early in life may contribute to later protection against adrenergic stress. Together these data suggest that efforts to maintain an active lifestyle early in life may have long-lasting cardioprotective benefits.


Assuntos
Cardiopatias , Atividade Motora , Masculino , Feminino , Camundongos , Animais , Isoproterenol/farmacologia , Atividade Motora/fisiologia , Cardiopatias/metabolismo , Receptores Adrenérgicos/metabolismo , Fibrose , Exercício Físico , Miócitos Cardíacos/metabolismo
15.
Geroscience ; 45(4): 2545-2557, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37118350

RESUMO

Right heart failure (RHF) is a common and deadly disease in aged populations. Extra-cardiac outcomes of RHF such as skeletal muscle atrophy contribute to morbidity and mortality. Despite the significance of maintaining right ventricular (RV) and muscle function, the mechanisms of RHF and muscle atrophy are unclear. Metformin (MET) improves cardiac and muscle function through the regulation of metabolism and the cellular stress response. However, whether MET is a viable therapeutic for RHF and muscle atrophy is not yet known. We used deuterium oxide labeling to measure individual protein turnover in the RV as well as subcellular skeletal muscle proteostasis in aged male mice subjected to 4 weeks of hypobaric hypoxia (HH)-induced RHF. Mice exposed to HH had elevated RV mass and impaired RV systolic function, neither of which was prevented by MET. HH resulted in a higher content of glycolytic, cardiac, and antioxidant proteins in the RV, most of which were inhibited by MET. The synthesis of these key RV proteins was generally unchanged by MET, suggesting MET accelerated protein breakdown. HH resulted in a loss of skeletal muscle mass due to inhibited protein synthesis alongside myofibrillar protein breakdown. MET did not impact HH-induced muscle protein turnover and did not prevent muscle wasting. Together, we show tissue-dependent responses to HH-induced RHF where the RV undergoes hypertrophic remodeling with higher expression of metabolic and stress response proteins. Skeletal muscle undergoes loss of protein mass and atrophy, primarily due to myofibrillar protein breakdown. MET did not prevent HH-induced RV dysfunction or muscle wasting, suggesting that the identification of other therapies to attenuate RHF and concomitant muscle atrophy is warranted.


Assuntos
Insuficiência Cardíaca , Masculino , Camundongos , Animais , Miocárdio/metabolismo , Ventrículos do Coração/metabolismo , Atrofia Muscular
16.
Aerosp Med Hum Perform ; 94(12): 887-893, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38176033

RESUMO

INTRODUCTION: High-altitude [>2400 m (7874 ft)] acclimatization has been well studied with physiological adaptations like reductions in body weight and exercise capacity. However, despite the significance of moderate altitude [MA, 1524-2438 m (5000-8000 ft)], acclimatization at this elevation is not well described. We aimed to investigate differences in mice reared at MA compared to sea level (SL). We hypothesized that MA mice would be smaller and leaner and voluntarily run less than SL mice.METHODS: C57BL/6 mice reared for at least three generations in Laramie, WY [2194 m (7198 ft), MA], were compared to C57BL/6J mice from Bar Harbor, ME [20 m (66 ft), SL]. We quantified body composition and exercise outputs as well as cardiopulmonary morphometrics. Subsets of MA and SL mice were analyzed to determine differences in neuronal activation after exercise.RESULTS: When body weight was normalized to tibia length, SL animals weighed 1.30 g ⋅ mm-1 while MA mice weighed 1.13 g · mm-1. Total fat % and trunk fat % were higher in MA mice with values of 41% and 39%, respectively, compared to SL mice with values of 28% and 26%, respectively. However, no differences were noted in leg fat %. MA animals had higher heart mass (119 mg) and lower lung mass (160 mg) compared to SL mice heart mass (100 mg) and lung mass (177 mg). MA mice engaged in about 40% less voluntary wheel-running activity than SL animals.DISCUSSION: Physiological differences are apparent between MA and SL mice, prompting a need to further understand larger scale implications of residence at moderate altitude.O'Connor AE, Hatzenbiler DM, Flom LT, Bobadilla A-C, Bruns DR, Schmitt EE. Physiological and morphometric differences in resident moderate-altitude vs. sea-level mice. Aerosp Med Hum Perform. 2023; 94(12):887-893.


Assuntos
Doença da Altitude , Altitude , Animais , Camundongos , Camundongos Endogâmicos C57BL , Aclimatação/fisiologia , Peso Corporal
17.
Artigo em Inglês | MEDLINE | ID: mdl-35419571

RESUMO

Aging promotes structural and functional remodeling of the heart, even in the absence of external factors. There is growing clinical and experimental evidence supporting the existence of sex-specific patterns of cardiac aging, and in some cases, these sex differences emerge early in life. Despite efforts to identify sex-specific differences in cardiac aging, understanding how these differences are established and regulated remains limited. In addition to contributing to sex differences in age-related heart disease, sex differences also appear to underlie differential responses to cardiac stress such as adrenergic activation. Identifying the underlying mechanisms of sex-specific differences may facilitate the characterization of underlying heart disease phenotypes, with the ultimate goal of utilizing sex-specific therapeutic approaches for cardiac disease. The purpose of this review is to discuss the mechanisms and implications of sex-specific cardiac aging, how these changes render the heart more susceptible to disease, and how we can target age- and sex-specific differences to advance therapies for both male and female patients.

18.
High Alt Med Biol ; 23(3): 215-222, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35653735

RESUMO

Fullerton, Zackery S., Benjamin D. McNair, Nicholas A. Marcello, Emily E. Schmitt, and Danielle R. Bruns. Exposure to high altitude promotes loss of muscle mass that is not rescued by metformin. High Alt Med Biol. 23:215-222, 2022. Background: Exposure to high altitude (HA) causes muscle atrophy. Few therapeutic interventions attenuate muscle atrophy; however, the diabetic drug, metformin (Met), has been suggested as a potential therapeutic to preserve muscle mass with aging and obesity-related atrophy. The purpose of the present study was to test the hypothesis that HA would induce muscle atrophy that could be attenuated by Met. Methods: C57Bl6 male and female mice were exposed to simulated HA (∼5,200 m) for 4 weeks, while control (Con) mice remained at resident altitude (∼2,180 m). Met was administered in drinking water at 200 mg/(kg·day). We assessed muscle mass, myocyte cell size, muscle and body composition, and expression of molecular mediators of atrophy. Results: Mice exposed to HA were leaner and had a smaller hind limb complex (HLC) mass than Con mice. Loss of HLC mass and myocyte size were not attenuated by Met. Molecular markers for muscle atrophy were activated at HA in a sex-dependent manner. While the atrophic regulator, atrogin, was unchanged at HA or with Met, myostatin expression was upregulated at HA. In female mice, Met further stimulated myostatin expression. Conclusions: Although HA exposure resulted in loss of muscle mass, particularly in male mice, Met did not attenuate muscle atrophy. Identification of other interventions to preserve muscle mass during ascent to HA is warranted.


Assuntos
Metformina , Miostatina , Altitude , Animais , Feminino , Masculino , Metformina/metabolismo , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Músculos/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Miostatina/metabolismo
19.
PLoS One ; 16(1): e0245055, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33444357

RESUMO

BACKGROUND: COVID-19, the disease caused by SARS-CoV-2, has caused a pandemic, sparing few regions. However, limited reports suggest differing infection and death rates across geographic areas including populations that reside at higher elevations (HE). We aimed to determine if COVID-19 infection, death, and case mortality rates differed in higher versus low elevation (LE) U.S. counties. METHODS: Using publicly available geographic and COVID-19 data, we calculated per capita infection and death rates and case mortality in population density matched HE and LE U.S. counties. We also performed population-scale regression analysis to investigate the association between county elevation and COVID-19 infection rates. FINDINGS: Population density matching of LA (< 914m, n = 58) and HE (>2133m, n = 58) counties yielded significantly lower COVID-19 cases at HE versus LE (615 versus 905, p = 0.034). HE per capita deaths were significantly lower than LE (9.4 versus 19.5, p = 0.017). However, case mortality did not differ between HE and LE (1.78% versus 1.46%, p = 0.27). Regression analysis, adjusted for relevant covariates, demonstrated decreased COVID-19 infection rates by 12.82%, 12.01%, and 11.72% per 495m of county centroid elevation, for cases recorded over the previous 30, 90, and 120 days, respectively. CONCLUSIONS: This population-adjusted, controlled analysis suggests that higher elevation attenuates infection and death. Ongoing work from our group aims to identify the environmental, biological, and social factors of residence at HE that impact infection, transmission, and pathogenesis of COVID-19 in an effort to harness these mechanisms for future public health and/or treatment interventions.


Assuntos
Altitude , COVID-19/epidemiologia , COVID-19/mortalidade , COVID-19/transmissão , Humanos , Incidência , Pandemias , Densidade Demográfica , Saúde Pública , SARS-CoV-2/patogenicidade , Estados Unidos/epidemiologia
20.
Exp Gerontol ; 151: 111395, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33971279

RESUMO

Inhibition of the mammalian target of rapamycin (mTOR) by rapamycin attenuates heart failure (HF) and age-associated changes in left ventricular (LV) function. Rapamycin has also been suggested as a therapy for pulmonary hypertension (PH) and concomitant right heart failure (PH-RHF) based on reports of elevated mTOR signaling in young models with PH. However, rapamycin has yet to be tested in the setting of aging, PH, and right heart disease despite the fact that RV function predicts survival in both age-related HF as well as several pulmonary disease states including PH. Thus we tested the hypothesis that rapamycin treatment would attenuate hypoxic PH-RHF in old mice using a mouse model of hypobaric hypoxia (HH)-induced PH and right ventricular (RV) remodeling. Exposure to HH resulted in significant loss of body weight which was exacerbated by rapamycin. HH elevated lung and RV weight, RV wall thickness as well as RV systolic dysfunction as evidenced by RV stroke volume and cardiac output. While rapamycin rescued pulmonary artery acceleration time in males, it generally did not improve other indexes cardiopulmonary remodeling or function. As expected, HH induced expression of hypoxia-regulated genes in the RV and the lungs; however, this transcriptional activation was attenuated by rapamycin, representing a potential mechanism by which rapamycin is detrimental in the aged RV in the setting of chronic hypoxia. Together, we demonstrate that rapamycin is not a viable therapeutic in hypoxic PH in old mice, likely due to exacerbated loss of body weight in this setting. We suggest that future efforts should take into consideration the differences between the RV and LV and the interaction between mTOR and hypoxia in the setting of age-related disease.


Assuntos
Insuficiência Cardíaca , Hipertensão Pulmonar , Disfunção Ventricular Direita , Animais , Insuficiência Cardíaca/tratamento farmacológico , Hipertensão Pulmonar/tratamento farmacológico , Hipóxia/complicações , Masculino , Camundongos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR , Disfunção Ventricular Direita/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA