Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mutat ; 39(6): 851-859, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29573091

RESUMO

In the majority of colorectal cancer (CRC) cases, the genetic basis of predisposition remains unexplained. The goal of the study was to assess the regulatory SNPs (rSNPs) in the human genome and to reveal СRC drivers based on the available chromatin immunoprecipitation sequencing (ChIP-Seq, ChIA-PET) and transcriptional profiling (RNA-Seq) data. We combined positional (locations within genome regulatory elements) and functional (associated with allele-specific binding and expression) criteria followed by an analysis using genome-wide association studies (GWAS) and minor allele frequency (MAF) datasets. DeSeq2 analysis through 70 CRC patients reinforced the regulatory potential. rSNPs (1,476) that were associated with significant (P < 0.01) allele-specific events resulting in thirty that exhibited a link with CRC according to the MAF and 27, with a risk of malignancy in general according to GWAS. Selected rSNPs may modify the expression of genes for tumor suppressors and the regulators of signaling pathways, including noncoding RNAs. However, the rSNPs from the most represented group affect the expression of genes related to splicing. Our findings strongly suggest that the identified variants might contribute to CRC susceptibility, which indicates that aberrant splicing is one of the key mechanisms for unraveling disease etiopathogenesis and provides useful inputs for interpreting how genotypic variation corresponds to phenotypic outcome.


Assuntos
Neoplasias do Colo/genética , Predisposição Genética para Doença , Genoma Humano/genética , Polimorfismo de Nucleotídeo Único/genética , Alelos , Neoplasias do Colo/patologia , Feminino , Frequência do Gene , Estudo de Associação Genômica Ampla , Genótipo , Células HCT116 , Humanos , Masculino , Fatores de Risco
2.
BMC Neurosci ; 19(Suppl 1): 22, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29745862

RESUMO

BACKGROUND: A challenge of understanding the mechanisms underlying cognition including neurodevelopmental and neuropsychiatric disorders is mainly given by the potential severity of cognitive disorders for the quality of life and their prevalence. However, the field has been focused predominantly on protein coding variation until recently. Given the importance of tightly controlled gene expression for normal brain function, the goal of the study was to assess the functional variation including non-coding variation in human genome that is likely to play an important role in cognitive functions. To this end, we organized and utilized available genome-wide datasets from genomic, transcriptomic and association studies into a comprehensive data corpus. We focused on genomic regions that are enriched in regulatory activity-overlapping transcriptional factor binding regions and repurpose our data collection especially for identification of the regulatory SNPs (rSNPs) that showed associations both with allele-specific binding and allele-specific expression. We matched these rSNPs to the nearby and distant targeted genes and then selected the variants that could implicate the etiology of cognitive disorders according to Genome-Wide Association Studies (GWAS). Next, we use DeSeq 2.0 package to test the differences in the expression of the certain targeted genes between the controls and the patients that were diagnosed bipolar affective disorder and schizophrenia. Finally, we assess the potential biological role for identified drivers of cognition using DAVID and GeneMANIA. RESULTS: As a result, we selected fourteen regulatory SNPs locating within the loci, implicated from GWAS for cognitive disorders with six of the variants unreported previously. Grouping of the targeted genes according to biological functions revealed the involvement of processes such as 'posttranscriptional regulation of gene expression', 'neuron differentiation', 'neuron projection development', 'regulation of cell cycle process' and 'protein catabolic processes'. We identified four rSNP-targeted genes that showed differential expression between patient and control groups depending on brain region: NRAS-in schizophrenia cohort, CDC25B, DDX21 and NUCKS1-in bipolar disorder cohort. CONCLUSIONS: Overall, our findings are likely to provide the keys for unraveling the mechanisms that underlie cognitive functions including major depressive disorder, bipolar disorder and schizophrenia etiopathogenesis.


Assuntos
Transtorno Bipolar/genética , Transtorno Depressivo Maior/genética , Predisposição Genética para Doença , Esquizofrenia/genética , Regulação da Expressão Gênica , Loci Gênicos , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , Transcriptoma
3.
PLoS One ; 8(4): e62453, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23634228

RESUMO

Opisthorchis felineus or Siberian liver fluke is a trematode parasite (Opisthorchiidae) that infects the hepato-biliary system of humans and other mammals. Despite its public health significance, this wide-spread Eurasian species is one of the most poorly studied human liver flukes and nothing is known about its population genetic structure and demographic history. In this paper, we attempt to fill this gap for the first time and to explore the genetic diversity in O. felineus populations from Eastern Europe (Ukraine, European part of Russia), Northern Asia (Siberia) and Central Asia (Northern Kazakhstan). Analysis of marker DNA fragments from O. felineus mitochondrial cytochrome c oxidase subunit 1 and 3 (cox1, cox3) and nuclear rDNA internal transcribed spacer 1 (ITS1) sequences revealed that genetic diversity is very low across the large geographic range of this species. Microevolutionary processes in populations of trematodes may well be influenced by their peculiar biology. Nevertheless, we suggest that lack of population genetics structure observed in O. felineus can be primarily explained by the Pleistocene glacial events and subsequent sudden population growth from a very limited group of founders. Rapid range expansion of O. felineus through Asian and European territories after severe bottleneck points to a high dispersal potential of this trematode species.


Assuntos
Variação Genética , Opisthorchis/genética , Animais , DNA Intergênico/genética , Demografia , Genes Mitocondriais/genética , Marcadores Genéticos/genética , Haplótipos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA