Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Cell ; 31(5): 631-40, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18775323

RESUMO

Mutations in XLF/Cernunnos (XLF) cause lymphocytopenia in humans, and various studies suggest an XLF role in classical nonhomologous end joining (C-NHEJ). We now find that XLF-deficient mouse embryonic fibroblasts are ionizing radiation (IR) sensitive and severely impaired for ability to support V(D)J recombination. Yet mature lymphocyte numbers in XLF-deficient mice are only modestly decreased. Moreover, XLF-deficient pro-B lines, while IR-sensitive, perform V(D)J recombination at nearly wild-type levels. Correspondingly, XLF/p53-double-deficient mice are not markedly prone to the pro-B lymphomas that occur in previously characterized C-NHEJ/p53-deficient mice; however, like other C-NHEJ/p53-deficient mice, they still develop medulloblastomas. Despite nearly normal V(D)J recombination in developing B cells, XLF-deficient mature B cells are moderately defective for immunoglobulin heavy-chain class switch recombination. Together, our results implicate XLF as a C-NHEJ factor but also indicate that developing mouse lymphocytes harbor cell-type-specific factors/pathways that compensate for the absence of XLF function during V(D)J recombination.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Linfócitos/fisiologia , Recombinação Genética , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/fisiologia , Células Cultivadas , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Feminino , Fibroblastos/citologia , Fibroblastos/fisiologia , Rearranjo Gênico , Humanos , Switching de Imunoglobulina , Linfócitos/citologia , Linfócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
Proc Natl Acad Sci U S A ; 108(5): 2028-33, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21245310

RESUMO

Antigen receptor variable region exons are assembled during lymphocyte development from variable (V), diversity (D), and joining (J) gene segments. Each germ-line gene segment is flanked by recombination signal sequences (RSs). Recombination-activating gene endonuclease initiates V(D)J recombination by cleaving a pair of gene segments at their junction with flanking RSs to generate covalently sealed (hairpinned) coding ends (CEs) and blunt 5'-phosphorylated RS ends (SEs). Subsequently, nonhomologous end joining (NHEJ) opens, processes, and fuses CEs to form coding joins (CJs) and precisely joins SEs to form signal joins (SJs). DNA-dependent protein kinase catalytic subunit (DNA-PKcs) activates Artemis endonuclease to open and process hairpinned CEs before their fusion into CJs by other NHEJ factors. Although DNA-PKcs is absolutely required for CJs, SJs are formed to variable degrees and with variable fidelity in different DNA-PKcs-deficient cell types. Thus, other factors may compensate for DNA-PKcs function in SJ formation. DNA-PKcs and the ataxia telangiectasia-mutated (ATM) kinase are members of the same family, and they share common substrates in the DNA damage response. Although ATM deficiency compromises chromosomal V(D)J CJ formation, it has no reported role in SJ formation in normal cells. Here, we report that DNA-PKcs and ATM have redundant functions in SJ formation. Thus, combined DNA-PKcs and ATM deficiency during V(D)J recombination leads to accumulation of unjoined SEs and lack of SJ fidelity. Moreover, treatment of DNA-PKcs- or ATM-deficient cells, respectively, with specific kinase inhibitors for ATM or DNA-PKcs recapitulates SJ defects, indicating that the overlapping V(D)J recombination functions of ATM and DNA-PKcs are mediated through their kinase activities.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteína Quinase Ativada por DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Recombinação Genética , Proteínas Supressoras de Tumor/fisiologia , VDJ Recombinases/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Sequência de Bases , Proteínas de Ciclo Celular/genética , Primers do DNA , Proteína Quinase Ativada por DNA/genética , Proteínas de Ligação a DNA/genética , Camundongos , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética
3.
Proc Natl Acad Sci U S A ; 105(27): 9302-6, 2008 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-18599436

RESUMO

Upon DNA damage, histone H2AX is phosphorylated by ataxia-telangiectasia mutated (ATM) and other phosphoinositide 3-kinase-related protein kinases. To elucidate further the potential overlapping and unique functions of ATM and H2AX, we asked whether they have synergistic functions in the development and maintenance of genomic stability by inactivating both genes in mouse germ line. Combined ATM/H2AX deficiency caused embryonic lethality and dramatic cellular genomic instability. Mechanistically, severe genomic instability in the double-deficient cells is associated with a requirement for H2AX to repair oxidative DNA damage resulting from ATM deficiency. We discuss these findings in the context of synergies between ATM and other repair factors.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Histonas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Proliferação de Células , Dano ao DNA , Reparo do DNA , Perda do Embrião/metabolismo , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/metabolismo , Células-Tronco Embrionárias/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Camundongos , Gravidez , Espécies Reativas de Oxigênio/metabolismo
4.
Mol Cancer Res ; 6(3): 426-34, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18337449

RESUMO

Little is known about the factors that influence the proteasome structures in cells and their activity, although this could be highly relevant to cancer therapy. We have previously shown that, within minutes, irradiation inhibits substrate degradation by the 26S proteasome in most cell types. Here, we report an exception in U87 glioblastoma cells transduced to express the epidermal growth factor receptor vIII (EGFRvIII) mutant (U87EGFRvIII), which does not respond to irradiation with 26S proteasome inhibition. This was assessed using either a fluorogenic substrate or a reporter gene, the ornithine decarboxylase degron fused to ZsGreen (cODCZsGreen), which targets the protein to the 26S proteasome. To elucidate whether this was due to alterations in proteasome composition, we used quantitative reverse transcription-PCR to quantify the constitutive (X, Y, Z) and inducible 20S subunits (Lmp7, Lmp2, Mecl1), and 11S (PA28alpha and beta) and 19S components (PSMC1 and PSMD4). U87 and U87EGFRvIII significantly differed in expression of proteasome subunits, and in particular immunosubunits. Interestingly, 2 Gy irradiation of U87 increased subunit expression levels by 16% to 324% at 6 hours, with a coincident 30% decrease in levels of the proteasome substrate c-myc, whereas they changed little in U87EGFRvIII. Responses similar to 2 Gy were seen in U87 treated with a proteasome inhibitor, NPI0052, suggesting that proteasome inhibition induced replacement of subunits independent of the means of inhibition. Our data clearly indicate that the composition and function of the 26S proteasome can be changed by expression of the EGFRvIII. How this relates to the increased radioresistance associated with this cell line remains to be established.


Assuntos
Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica , Inibidores de Proteassoma , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Primers do DNA , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Glioblastoma/genética , Humanos , Microscopia Confocal , Complexo de Endopeptidases do Proteassoma/efeitos da radiação , Proteínas Recombinantes de Fusão/biossíntese , Retroviridae , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Int J Radiat Biol ; 85(6): 483-94, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19401903

RESUMO

PURPOSE: The classical radiobiological paradigm is that DNA is the target for cell damage caused by ionising radiation. However, evidence is accumulating that other constituents, such as the membrane, organelles, and proteins, are also important targets. We have shown that the isolated 26S proteasome is one such target and here we wish to substantiate it within the cell, in situ. MATERIALS AND METHODS: We used confocal microscopy to quantitatively detect and subcellularly localise radiation-induced 26S proteasome inhibition in cells expressing an ornithine decarboxylase degron that targets a fused Zoanthus species green (ZsGreen) fluorescent protein reporter specifically to the 26S proteasome. RESULTS: Exposure of cells to a range of radiation doses, even as low as 0.05 Gy inhibited 26S activity within minutes. Initially, punctate nuclear ZsGreen fluorescence was observed that became cytoplasmic after seven hours -- a pattern distinct from the diffuse homogeneous fluorescence of cells incubated in the conventional proteasome inhibitor MG-132. CONCLUSIONS: Our study clearly indicates that the 26S proteasome is a radiation target with physiological consequences and introduces a new perspective in mechanistic investigations of cellular responses to stresses.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Ciclo Celular/efeitos da radiação , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral , Relação Dose-Resposta à Radiação , Genes Reporter , Proteínas de Fluorescência Verde/genética , Humanos , Ornitina Descarboxilase/genética , Radiação Ionizante , Estresse Fisiológico/efeitos da radiação , Ubiquitina/metabolismo
6.
Semin Radiat Oncol ; 17(2): 121-30, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17395042

RESUMO

Irradiation perturbs the homeostatic network linking parenchymal, mesenchymal, and vascular cells within tissues. Normal communication between cells through soluble, matrix, and cell-associated ligands and receptors is altered so as to set in motion a seemingly inexorable series of events aimed at tissue regeneration and healing. In late responding normal tissues where cell death is not compensated for by rapid regeneration, this process unfortunately often culminates in symptomatic complications of radiation exposure. Cytokines and their receptors are prominent in driving the cascade of molecular responses using the balance between seemingly mutually antagonistic molecules to control and direct the healing processes. There is strong evidence from preclinical models for the importance of cytokine-driven pathways in late radiation damage and growing evidence in humans for their relevance to radiation-induced disease. This review aims to show some general aspects of the molecular torrents that drive responses in irradiated tissues before and during the development of late effects. It attempts to collate some of the findings from preclinical models of late lung, central nervous system, skin, and intestinal damage and from clinical studies in the belief that understanding how irradiation perturbs the cellular communication networks will allow rationale intervention for mitigating late radiation tissue damage and carcinogenesis.


Assuntos
Citocinas/metabolismo , Lesões por Radiação/patologia , Radioterapia/efeitos adversos , Apoptose/efeitos da radiação , Comunicação Celular/efeitos da radiação , Homeostase/efeitos da radiação , Humanos , Transdução de Sinais/efeitos da radiação
7.
J Exp Med ; 207(7): 1369-80, 2010 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-20566716

RESUMO

Ataxia telangiectasia mutated (ATM) deficiency predisposes humans and mice to T lineage lymphomas with recurrent chromosome 14 translocations involving the T cell receptor alpha/delta (Tcra/d) locus. Such translocations have been thought to result from aberrant repair of DNA double-strand breaks (DSBs) during Tcra locus V(D)J recombination, and to require the Tcra enhancer (Ealpha) for Tcra rearrangement or expression of the translocated oncogene. We now show that, in addition to the known chromosome 14 translocation, ATM-deficient mouse thymic lymphomas routinely contain a centromeric fragment of chromosome 14 that spans up to the 5' boundary of the Tcra/d locus, at which position a 500-kb or larger region centromeric to Tcra/d is routinely amplified. In addition, they routinely contain a large deletion of the telomeric end of one copy of chromosome 12. In contrast to prior expectations, the recurrent translocations and amplifications involve V(D)J recombination-initiated breaks in the Tcrd locus, as opposed to the Tcra locus, and arise independently of the Ealpha. Overall, our studies reveal previously unexpected mechanisms that contribute to the oncogenic transformation of ATM-deficient T lineage cells.


Assuntos
Proteínas de Ligação a DNA/deficiência , Amplificação de Genes/genética , Rearranjo Gênico da Cadeia delta dos Receptores de Antígenos dos Linfócitos T/genética , Linfoma/enzimologia , Proteínas Serina-Treonina Quinases/deficiência , Receptores de Antígenos de Linfócitos T gama-delta/genética , Neoplasias do Timo/enzimologia , Neoplasias do Timo/genética , Proteínas Supressoras de Tumor/deficiência , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Sequência de Bases , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromossomos de Mamíferos/genética , Células Clonais , Análise Citogenética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos/genética , Loci Gênicos/genética , Linfoma/genética , Linfoma/patologia , Camundongos , Dados de Sequência Molecular , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias do Timo/patologia , Translocação Genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
8.
Proc Natl Acad Sci U S A ; 104(11): 4518-23, 2007 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-17360556

RESUMO

Nonhomologous DNA end-joining (NHEJ) is a major pathway of DNA double-strand break (DSB) repair in mammalian cells, and it functions to join both specifically programmed DSBs that occur in the context of V(D)J recombination during early lymphocyte development as well as general DSBs that occur in all cells. Thus, defects in NHEJ impair V(D)J recombination and lead to general genomic instability. In human patients, mutations of Cernunnos-XLF (also called NHEJ1), a recently identified NHEJ factor, underlie certain severe combined immune deficiencies associated with defective V(D)J recombination and radiosensitivity. To characterize Cernunnos-XLF function in mouse cells, we used gene-targeted mutation to delete exons 4 and 5 from both copies of the Cernunnos-XLF gene in ES cell (referred to as Cer(Delta/Delta) ES cells). Analyses of Cer(Delta/Delta) ES cells showed that they produce no readily detectable Cernunnos-XLF protein. Based on transient V(D)J recombination assays, we find that Cer(Delta/Delta) ES cells have dramatic impairments in ability to form both V(D)J coding joins and joins of their flanking recombination signal sequences (RS joins). Cer(Delta/Delta) ES cells are highly sensitive to ionizing radiation and have intrinsic DNA DSB repair defects as measured by pulse field gel electrophoresis. Finally, the Cernunnos-XLF mutations led to increased spontaneous genomic instability, including translocations. We conclude that, in mice, Cernunnos-XLF is essential for normal NHEJ-mediated repair of DNA DSBs and that Cernunnos-XLF acts as a genomic caretaker to prevent genomic instability.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Células-Tronco Embrionárias/citologia , Alelos , Animais , Linhagem Celular , Dano ao DNA , Éxons , Deleção de Genes , Instabilidade Genômica , Hibridização in Situ Fluorescente , Linfócitos/metabolismo , Camundongos , Estrutura Terciária de Proteína , Recombinação Genética , VDJ Recombinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA