Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 284(52): 36491-36499, 2009 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-19875444

RESUMO

All mitochondrial tRNAs in Trypanosoma brucei derive from cytosolic tRNAs that are in part imported into mitochondria. Some trypanosomal tRNAs are thiolated in a compartment-specific manner. We have identified three proteins required for the thio modification of cytosolic tRNA(Gln), tRNA(Glu), and tRNA(Lys). RNA interference-mediated ablation of these proteins results in the cytosolic accumulation non-thio-modified tRNAs but does not increase their import. Moreover, in vitro import experiments showed that both thio-modified and non-thio-modified tRNA(Glu) can efficiently be imported into mitochondria. These results indicate that unlike previously suggested the cytosol-specific thio modifications do not function as antideterminants for mitochondrial tRNA import. Consistent with these results we showed by using inducible expression of a tagged tRNA(Glu) that it is mainly the thiolated form that is imported in vivo. Unexpectedly, the imported tRNA becomes dethiolated after import, which explains why the non-thiolated form is enriched in mitochondria. Finally, we have identified two genes required for thiolation of imported tRNA(Trp) whose wobble nucleotide is subject to mitochondrial C to U editing. Interestingly, down-regulation of thiolation resulted in an increase of edited tRNA(Trp) but did not affect growth.


Assuntos
Mitocôndrias/metabolismo , Processamento Pós-Transcricional do RNA/fisiologia , RNA de Protozoário/metabolismo , RNA de Transferência/metabolismo , Compostos de Sulfidrila/metabolismo , Trypanosoma brucei brucei/metabolismo , Animais , Transporte Biológico/fisiologia , Mitocôndrias/genética , Interferência de RNA , RNA de Protozoário/genética , RNA de Transferência/genética , Trypanosoma brucei brucei/genética
2.
PLoS One ; 11(12): e0166135, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27907004

RESUMO

Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is considered to be the main variant surface antigen (VSA) of Plasmodium falciparum and is mainly localized on electron-dense knobs in the membrane of the infected erythrocyte. Switches in PfEMP1 expression provide the basis for antigenic variation and are thought to be critical for parasite persistence during chronic infections. Recently, strain transcending anti-PfEMP1 immunity has been shown to develop early in life, challenging the role of PfEMP1 in antigenic variation during chronic infections. In this work we investigate how P. falciparum achieves persistence during a chronic asymptomatic infection. The infected individual (MOA) was parasitemic for 42 days and multilocus var gene genotyping showed persistence of the same parasite population throughout the infection. Parasites from the beginning of the infection were adapted to tissue culture and cloned by limiting dilution. Flow cytometry using convalescent serum detected a variable surface recognition signal on isogenic clonal parasites. Quantitative real-time PCR with a field isolate specific var gene primer set showed that the surface recognition signal was not correlated with transcription of individual var genes. Strain transcending anti-PfEMP1 immunity of the convalescent serum was demonstrated with CD36 selected and PfEMP1 knock-down NF54 clones. In contrast, knock-down of PfEMP1 did not have an effect on the antibody recognition signal in MOA clones. Trypsinisation of the membrane surface proteins abolished the surface recognition signal and immune electron microscopy revealed that antibodies from the convalescent serum bound to membrane areas without knobs and with knobs. Together the data indicate that PfEMP1 is not the main variable surface antigen during a chronic infection and suggest a role for trypsin sensitive non-PfEMP1 VSAs for parasite persistence in chronic infections.


Assuntos
Antígenos de Protozoários/genética , Malária Falciparum/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Variação Antigênica/genética , Variação Antigênica/imunologia , Antígenos de Protozoários/imunologia , Antígenos de Superfície/genética , Antígenos de Superfície/imunologia , Eritrócitos/parasitologia , Citometria de Fluxo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genótipo , Humanos , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Malária Falciparum/patologia , Plasmodium falciparum/imunologia , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA