Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biochem Mol Toxicol ; 38(1): e23588, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985955

RESUMO

The P-glycoprotein (P-gp) efflux pump plays a major role in xenobiotic detoxification. The inhibition of its activity by environmental contaminants remains however rather little characterised. The present study was designed to develop a combination of different approaches to identify P-gp inhibitors among a large number of pesticides using in silico and in vitro models. First, the prediction performance of four web tools was evaluated alone or in combination using a set of recently marketed drugs. The best combination of web tools-AdmetSAR2.0/PgpRules/pkCSM-was next used to predict P-gp activity inhibition by 762 pesticides. Among the 187 pesticides predicted to be P-gp inhibitors, 11 were tested in vitro for their ability to inhibit the efflux of reference substrates (rhodamine 123 and Hoechst 33342) in P-gp overexpressing MCF7R cells and to inhibit the efflux of the reference substrate rhodamine 123 in the Caco-2 cell monolayer. In MCF7R cell assays, ivermectin B1a, emamectin B1 benzoate, spinosad, dimethomorph and tralkoxydim inhibited P-gp activity; ivermectin B1a, emamectin B1 benzoate and spinosad were determined to be stronger inhibitors (half-maximal inhibitory concentration [IC50 ] of 3 ± 1, 5 ± 1 and 7 ± 1 µM, respectively) than dimethomorph and tralkoxydim (IC50 of 102 ± 7 and 88 ± 7 µM, respectively). Ivermectin B1a, emamectin B1 benzoate, spinosad and dimethomorph also inhibited P-gp activity in Caco-2 cell monolayer assays, with dimethomorph being a weaker P-gp inhibitor. These combined approaches could be used to identify P-gp inhibitors among food contaminants, but need to be optimised and adapted for high-throughput screening.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Cicloexanonas , Dissacarídeos , Iminas , Praguicidas , Humanos , Ivermectina/farmacologia , Rodamina 123 , Células CACO-2 , Praguicidas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP , Benzoatos
2.
Ecotoxicol Environ Saf ; 263: 115348, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37597291

RESUMO

Organophosphate flame retardants (OPFRs) are environmental pollutants of increasing interest, widely distributed in the environment and exerting possible deleterious effects towards the human health. The present study investigates in vitro their possible interactions with human drug transporters, which are targets for environmental chemicals and actors of their toxicokinetics. Some OPFRs, i.e., tris(2-butoxyethyl) phosphate (TBOEP), tris(1,3-dichloroisopropyl) phosphate (TDCPP), tri-o-cresyl phosphate (TOCP) and triphenyl phosphate (TPHP), were found to inhibit activities of some transporters, such as organic anion transporter 3 (OAT3), organic anion transporting polypeptide (OATP) 1B1, OATP1B3, organic cation transporter 2 (OCT2) or breast cancer resistance protein (BCRP). These effects were concentration-dependent, with IC50 values ranging from 6.1 µM (for TDCPP-mediated inhibition of OCT2) to 51.4 µM (for TOCP-mediated inhibition of BCRP). OPFRs also blocked the transporter-dependent membrane passage of endogenous substrates, notably that of hormones. OAT3 however failed to transport TBOEP and TPHP. OPFRs additionally repressed mRNA expressions of some transporters in cultured human hepatic HepaRG cells, especially those of OAT2 and OCT1 in response to TOCP, with IC50 values of 2.3 µM and 2.5 µM, respectively. These data therefore add OPFRs to the expanding list of pollutants interacting with drug transporters, even if OPFR concentrations required to impact transporters, in the 2-50 µM range, are rather higher than those observed in humans environmentally or dietarily exposed to these chemicals.


Assuntos
Poluentes Ambientais , Retardadores de Chama , Tritolil Fosfatos , Humanos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Retardadores de Chama/toxicidade , Proteínas de Neoplasias , Proteínas de Membrana Transportadoras/genética , Poluentes Ambientais/toxicidade
3.
Xenobiotica ; 52(6): 644-652, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36149323

RESUMO

Although pharmaceutical companies have to study drug-transporter interaction, environmental contaminant interactions with these transporters are not well characterised. In this study, we demonstrated using in vitro transfected cell line that some organophosphorus pesticides are able to interact with drug efflux transporters like P-glycoprotein, BCRP and MRPs.According to our results, dibrom was found to inhibit only Hoechst binding site of P-gp with an IC50 closed to 77 µM, phosmet inhibited BCRP efflux with an IC50 of 42 µM and only profenofos was able to inhibit BCRP, MRPs and P-gp at two binding sites. As profenofos appeared to be a potent ABC transporter inhibitor, we studied its potential substrate property towards P-gp.Using a docking approach, we developed an in silico tool to study pesticide properties to be a probe or inhibitor of P-gp transporter. From both in silico and in vitro results, profenofos was not considered as a P-gp substrate.Combining both in vitro and docking methods appears to be an attractive approach to select pesticides that would not pass into the blood systemic circulation.


Assuntos
Naled , Praguicidas , Fosmet , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina , Interações Medicamentosas , Proteínas de Membrana Transportadoras , Proteínas de Neoplasias/metabolismo , Compostos Organofosforados , Praguicidas/farmacologia , Preparações Farmacêuticas
4.
Arch Toxicol ; 96(1): 243-258, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34762139

RESUMO

The liver is essential in the elimination of environmental and food contaminants. Given the interspecies differences between rodents and humans, the development of relevant in vitro human models is crucial to investigate liver functions and toxicity in cells that better reflect pathophysiological processes. Classically, the differentiation of the hepatic HepaRG cell line requires high concentration of dimethyl sulfoxide (DMSO), which restricts its usefulness for drug-metabolism studies. Herein, we describe undifferentiated HepaRG cells embedded in a collagen matrix in DMSO-free conditions that rapidly organize into polarized hollow spheroids of differentiated hepatocyte-like cells (Hepoid-HepaRG). Our conditions allow concomitant proliferation with high levels of liver-specific functions and xenobiotic metabolism enzymes expression and activities after a few days of culture and for at least 4 weeks. By studying the toxicity of well-known injury-inducing drugs by treating cells with 1- to 100-fold of their plasmatic concentrations, we showed appropriate responses and demonstrate the sensitivity to drugs known to induce various degrees of liver injury. Our results also demonstrated that the model is well suited to estimate cholestasis and steatosis effects of drugs following chronic treatment. Additionally, DNA alterations caused by four genotoxic compounds (Aflatoxin B1 (AFB1), Benzo[a]Pyrene (B[a]P), Cyclophosphamide (CPA) and Methyl methanesulfonate (MMS)) were quantified in a dose-dependent manner by the comet and micronucleus assays. Their genotoxic effects were significantly increased after either an acute 24 h treatment (AFB1: 1.5-6 µM, CPA: 2.5-10 µM, B[a]P: 12.5-50 µM, MMS: 90-450 µM) or after a 14-day treatment at much lower concentrations (AFB1: 0.05-0.2 µM, CPA: 0.125-0.5 µM, B[a]P: 0.125-0.5 µM) representative to human exposure. Altogether, the DMSO-free 3D culture of Hepoid-HepaRG provides highly differentiated and proliferating cells relevant for various toxicological in vitro assays, especially for drug-preclinical studies and environmental chemicals risk assessment.


Assuntos
Dimetil Sulfóxido , Hepatócitos , Dano ao DNA , Dimetil Sulfóxido/toxicidade , Fígado , Testes para Micronúcleos/métodos
5.
Xenobiotica ; 51(4): 467-478, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33455503

RESUMO

Interactions of the Janus kinase (JAK) inhibitor ruxolitinib with solute carriers (SLCs) remain incompletely characterised. The present study was therefore designed to investigate this issue.The interactions of ruxolitinib with SLCs were analysed using transporter-overexpressing human embryonic kidney HEK293 cells. Substrate accumulation was detected by spectrofluorimetry, liquid chromatography coupled to tandem mass spectrometry or scintillation counting.Ruxolitinib was found to potently inhibit the activities of organic anion transporter 3 (OAT3), organic cation transporter 2 (OCT2), multidrug and toxin extrusion 1 (MATE1) and MATE2-K (half maximal inhibitory concentration (IC50) < 10 µM). It blocked OAT1, OAT4, OATP1B1, OATP1B3, OATP2B1 and OCT3, but in a weaker manner (IC50 > 10 µM), whereas OCT1 was not impacted. No time-dependent inhibition was highlighted. When applying the US Food and Drug Administration (FDA) criteria for transporters-related drug-drug interaction risk, OCT2 and MATE2-K, unlike MATE1 and OAT3, were predicted to be in vivo inhibited by ruxolitinib. Cellular uptake studies additionally indicated that ruxolitinib is a substrate for MATE1 and MATE2-K, but not for OAT3 and OCT2.Ruxolitinib in vitro blocked activities of most of SLC transporters. Only OCT2 and MATE-2K may be however clinically inhibited by the JAK inhibitor, with the caution for OCT2 that in vitro inhibition data were generated with an FDA-non recommended fluorescent substrate. Ruxolitinib MATEs-mediated transport may additionally deserve attention for its possible pharmacological consequences in MATE-positive cells.


Assuntos
Inibidores de Janus Quinases , Preparações Farmacêuticas , Interações Medicamentosas , Células HEK293 , Humanos , Nitrilas , Proteínas de Transporte de Cátions Orgânicos , Pirazóis , Pirimidinas
6.
Biopharm Drug Dispos ; 42(8): 393-398, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34272891

RESUMO

P-glycoprotein (P-gp) is an efflux pump implicated in pharmacokinetics and drug-drug interactions. The identification of its substrates is consequently an important issue, notably for drugs under development. For such a purpose, various in silico methods have been developed, but their relevance remains to be fully established. The present study was designed to get insight about this point, through determining the performance values of six freely accessible Web-tools (ADMETlab, AdmetSAR2.0, PgpRules, pkCSM, SwissADME and vNN-ADMET), computationally predicting P-gp-mediated transport. Using an external test set of 231 marketed drugs, approved over the 2010-2020 period by the US Food and Drug Administration and fully in vitro characterized for their P-gp substrate status, various performance parameters (including sensitivity, specificity, accuracy, Matthews correlation coefficient and area under the receiver operating characteristics curve) were determined. They were found to rather poorly meet criteria commonly required for acceptable prediction, whatever the Web-tools were used alone or in combination. Predictions of being P-gp substrate or non-substrate by these online in silico methods may therefore be considered with caution.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Simulação por Computador/normas , Desenvolvimento de Medicamentos , Interações Medicamentosas , Farmacocinética , Aprovação de Drogas , Desenvolvimento de Medicamentos/métodos , Desenvolvimento de Medicamentos/tendências , Humanos , Valor Preditivo dos Testes , Estudo de Prova de Conceito , Reprodutibilidade dos Testes , Estados Unidos
7.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34884730

RESUMO

The search of substrates for solute carriers (SLCs) constitutes a major issue, owing notably to the role played by some SLCs, such as the renal electrogenic organic cation transporter (OCT) 2 (SLC22A2), in pharmacokinetics, drug-drug interactions and drug toxicity. For this purpose, substrates have been proposed to be identified by their cis-inhibition and trans-stimulation properties towards transporter activity. To get insights on the sensitivity of this approach for identifying SLC substrates, 15 various exogenous and endogenous OCT2 substrates were analysed in the present study, using 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (DiASP) as a fluorescent OCT2 tracer substrate. All OCT2 substrates cis-inhibited DiASP uptake in OCT2-overexpressing HEK293 cells, with IC50 values ranging from 0.24 µM (for ipratropium) to 2.39 mM (for dopamine). By contrast, only 4/15 substrates, i.e., acetylcholine, agmatine, choline and metformin, trans-stimulated DiASP uptake, with a full suppression of the trans-stimulating effect of metformin by the reference OCT2 inhibitor amitriptyline. An analysis of molecular descriptors next indicated that trans-stimulating OCT2 substrates exhibit lower molecular weight, volume, polarizability and lipophilicity than non-trans-stimulating counterparts. Overall, these data indicated a rather low sensitivity (26.7%) of the trans-stimulation assay for identifying OCT2 substrates, and caution with respect to the use of such assay may therefore be considered.


Assuntos
Transportador 2 de Cátion Orgânico/metabolismo , Células HEK293 , Humanos , Estimulação Química
8.
Xenobiotica ; 50(11): 1380-1392, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32421406

RESUMO

Pesticides are now recognised to interact with drug transporters, but only few data are available on this issue for carbamate pesticides, a widely used class of agrochemicals, to which humans are highly exposed. The present study was therefore designed to determine whether four representative carbamate pesticides, i.e. the insecticides aminocarb and carbofuran, the herbicide chlorpropham and the fungicide propamocarb, may impair activities of main drug transporters implicated in pharmacokinetics. The interactions of carbamates with solute carrier and ATP-binding cassette transporters were investigated using cultured transporter-overexpressing cells, reference substrates and spectrofluorimetry-, liquid chomatography/tandem mass spectrometry- or radioactivity-based methods. Aminocarb and carbofuran exerted no or minimal effects on transporter activities, whereas chlorpropham inhibited BCRP and OAT3 activities and propamocarb decreased those of OCT1 and OCT2, but cis-stimulated that of MATE2-K. Such alterations of transporters however required chlorpropham/propamocarb concentrations in the 5-50 µM range, likely not relevant to environmental exposure. Trans-stimulation assays and propamocarb accumulation experiments additionally suggested that propamocarb is not a substrate for OCT1, OCT2 and MATE2-K. These data indicate that some carbamate pesticides can interact in vitro with some drug transporters, but only when used at concentrations higher than those expected to occur in environmentally exposed humans.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Carbamatos/metabolismo , Praguicidas/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Interações Medicamentosas , Humanos , Inseticidas , Proteínas de Neoplasias , Proteínas de Transporte de Cátions Orgânicos
9.
J Biochem Mol Toxicol ; 33(10): e22379, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31364238

RESUMO

The interactions of six neonicotinoid pesticides and one neonicotinoid metabolite with drug transporters have been characterized in vitro. Acetamiprid, clothianidin, imidacloprid, nitenpyram, thiacloprid and its metabolite thiacloprid amide, and thiamethoxam, each used at 100 µM, did not impair activity of the efflux pumps P-glycoprotein, multidrug resistance-associated proteins, and breast cancer resistance protein. They also did not inhibit that of the uptake transporters OATP1B1, OATP1B3, OAT4, and MATE1, whereas that of OATP2B1, OAT1, and MATE2-K was affected by only one of the seven neonicotinoids. Activity of OCT1 was moderately stimulated (up to 1.5-fold) by several neonicotinoids. By contrast, that of OAT3 and OCT2 was inhibited by most (OAT3), if not all (OCT2), neonicotinoids, with IC50 values in the 20 to 60 µM range for thiacloprid, likely not relevant to environmental exposure. Thiacloprid was moreover not transported by OAT3 and OCT2. Overall, these data suggest that neonicotinoid pesticides rather poorly interact with drug transporter activities.


Assuntos
Inseticidas/farmacologia , Neonicotinoides/farmacologia , Receptores de Superfície Celular/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Interações Medicamentosas , Humanos , Inseticidas/farmacocinética , Neonicotinoides/metabolismo , Neonicotinoides/farmacocinética , Tiazinas/metabolismo
10.
Xenobiotica ; 49(3): 363-374, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29448871

RESUMO

1. Organophosphorus pesticides (OPs) are known to interact with human ATP-binding cassette drug efflux pumps. The present study was designed to determine whether they can also target activities of human solute carrier (SLC) drug transporters. 2. The interactions of 13 OPs with SLC transporters involved in drug disposition, such as organic cation transporters (OCTs), multidrug and toxin extrusion proteins (MATEs), organic anion transporters (OATs) and organic anion transporting polypeptides (OATPs), were mainly investigated using transporter-overexpressing cell clones and fluorescent or radiolabeled reference substrates. 3. With a cut-off value of at least 50% modulation of transporter activity by 100 µM OPs, OAT1 and MATE2-K were not impacted, whereas OATP1B1 and MATE1 were inhibited by two and three OPs, respectively. OAT3 activity was similarly blocked by three OPs, and was additionally stimulated by one OP. Five OPs cis-stimulated OATP2B1 activity. Both OCT1 and OCT2 were inhibited by the same eight OPs, including fenamiphos and phosmet, with IC50 values however in the 3-30 µM range, likely not relevant to environmental exposure. 4. These data demonstrated that various OPs inhibit SLC drug transporter activities, especially those of OCT1 and OCT2, but only when used at high concentrations not expected to occur in environmentally-exposed humans.


Assuntos
Compostos Organofosforados/química , Praguicidas/química , Proteínas Carreadoras de Solutos/química , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Exposição Ambiental , Células HEK293 , Humanos
11.
Drug Metab Dispos ; 46(2): 131-140, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29162613

RESUMO

The inflammatory cytokine interleukin (IL)-6, which basically activates the Janus kinase (JAK)/ signal transducer and activator of transcription (STAT) signaling pathway, is well known to repress expression of hepatic cytochromes P-450 (P450s) and transporters. Therapeutic proteins, like monoclonal antibodies targeting IL-6 or its receptor, have consequently been demonstrated to restore full hepatic detoxification capacity, which results in inflammatory disease-related drug-drug interactions (idDDIs). In the present study, we investigated whether ruxolitinib, a small drug acting as a JAK1/2 inhibitor and currently used in the treatment of myeloproliferative neoplasms, may also counteract the repressing effects of IL-6 toward hepatic detoxifying systems. Ruxolitinib was found to fully inhibit IL-6-mediated repression of P450 (CYP1A2, CYP2B6, and CYP3A4) and transporter (NTCP, OATP1B1, and OCT1) mRNA levels in primary human hepatocytes and differentiated hepatoma HepaRG cells. Such effects were dose-dependent, with ruxolitinib EC50 values around 1.0-1.2 µM and thus close to ruxolitinib plasma levels that can be reached in patients. Moreover, they were associated with concomitant restoration of P450 and drug transporter activities in IL-6-exposed HepaRG cells. By contrast, ruxolitinib failed to suppress the repression of drug-detoxifying protein mRNA levels caused by IL-1ß The JAK inhibitor and anti-rheumatoid arthritis compound tofacitinib was additionally found to reverse IL-6-mediated suppression of P450 and transporter mRNA expressions. Taken together, our results demonstrated that small drugs acting as JAK inhibitors, like ruxolitinib, counteract IL-6-mediated repression of drug-metabolizing enzymes and drug transporters in cultured human hepatocytes. These JAK inhibitors may consequently be hypothesized to restore hepatic detoxification capacity for patients suffering from inflammatory diseases, which may in turn cause idDDIs.


Assuntos
Hepatócitos/efeitos dos fármacos , Inativação Metabólica/efeitos dos fármacos , Interleucina-6/metabolismo , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Pirazóis/farmacologia , Transporte Biológico/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas/fisiologia , Hepatócitos/metabolismo , Humanos , Nitrilas , Pirimidinas , Transdução de Sinais/efeitos dos fármacos
12.
Drug Metab Dispos ; 42(8): 1235-40, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24832206

RESUMO

Humans are usually exposed to several pesticides simultaneously; consequently, combined actions between pesticides themselves or between pesticides and other chemicals need to be addressed in the risk assessment. Many pesticides are efficient activators of pregnane X receptor (PXR) and/or constitutive androstane receptor (CAR), two major nuclear receptors that are also activated by other substrates. In the present work, we searched for interactions between endosulfan and methoxychlor, two organochlorine pesticides whose major routes of metabolism involve CAR- and PXR-regulated CYP3A4 and CYP2B6, and whose mechanisms of action in humans remain poorly understood. For this purpose, HepaRG cells were treated with both pesticides separately or in mixture for 24 hours or 2 weeks at concentrations relevant to human exposure levels. In combination they exerted synergistic cytotoxic effects. Whatever the duration of treatment, both compounds increased CYP3A4 and CYP2B6 mRNA levels while differently affecting their corresponding activities. Endosulfan exerted a direct reversible inhibition of CYP3A4 activity that was confirmed in human liver microsomes. By contrast, methoxychlor induced this activity. The effects of the mixture on CYP3A4 activity were equal to the sum of those of each individual compound, suggesting an additive effect of each pesticide. Despite CYP2B6 activity being unchanged and increased with endosulfan and methoxychlor, respectively, no change was observed with their mixture, supporting an antagonistic effect. Altogether, our data suggest that CAR and PXR activators endosulfan and methoxychlor can interact together and with other exogenous substrates in human hepatocytes. Their effects on CYP3A4 and CYP2B6 activities could have important consequences if extrapolated to the in vivo situation.


Assuntos
Citocromo P-450 CYP2B6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Endossulfano/metabolismo , Metoxicloro/metabolismo , Linhagem Celular Tumoral , Receptor Constitutivo de Androstano , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP3A/genética , Células Hep G2 , Humanos , Microssomos Hepáticos/metabolismo , Praguicidas/metabolismo , Receptor de Pregnano X , RNA Mensageiro/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo
13.
Chemosphere ; 358: 142122, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663675

RESUMO

Succinate dehydrogenase inhibitors (SDHIs) are widely-used fungicides, to which humans are exposed and for which putative health risks are of concern. In order to identify human molecular targets for these environmental chemicals, the interactions of 15 SDHIs with activities of main human drug transporters implicated in pharmacokinetics were investigated in vitro. 5/15 SDHIs, i.e., benzovindiflupyr, bixafen, fluxapyroxad, pydiflumetofen and sedaxane, were found to strongly reduce activity of the renal organic anion transporter (OAT) 3, in a concentration-dependent manner (with IC50 values in the 1.0-3.9 µM range), without however being substrates for OAT3. Moreover, these 5/15 SDHIs decreased the membrane transport of estrone-3 sulfate, an endogenous substrate for OAT3, and sedaxane was predicted to inhibit in vivo OAT3 activity in response to exposure to the acceptable daily intake (ADI) dose. In addition, pydiflumetofen strongly inhibited the renal organic cation transporter (OCT) 2 (IC50 = 2.0 µM) and benzovindiflupyr the efflux pump breast cancer resistance protein (BCRP) (IC50 = 3.9 µM). Other human transporters, including organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 as well as multidrug and toxin extrusion protein (MATE) 1 and MATE2-K were moderately or weakly inhibited by SDHIs, whereas P-glycoprotein, multidrug resistance-associated protein (MRP), OCT1 and OAT1 activities were not or only marginally impacted. Then, some human drug transporters, especially OAT3, constitute molecular targets for SDHIs. This could have toxic consequences, notably with respect to levels of endogenous compounds and metabolites substrates for the considered transporters or to potential SDHI-drug interactions. This could therefore contribute to putative health risk of these fungicides.


Assuntos
Succinato Desidrogenase , Humanos , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , Transporte Biológico/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Fungicidas Industriais/farmacologia , Inibidores Enzimáticos/farmacologia , Estrona/análogos & derivados , Estrona/metabolismo , Células HEK293 , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/antagonistas & inibidores
14.
Environ Pollut ; 331(Pt 2): 121882, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37236587

RESUMO

Human membrane drug transporters are recognized as major actors of pharmacokinetics; they also handle endogenous compounds, including hormones and metabolites. Chemical additives present in plastics interact with human drug transporters, which may have consequences for the toxicokinetics and toxicity of these widely-distributed environmental and/or dietary pollutants, to which humans are highly exposed. The present review summarizes key findings about this topic. In vitro assays have demonstrated that various plastic additives, including bisphenols, phthalates, brominated flame retardants, poly-alkyl phenols and per- and poly-fluoroalkyl substances, can inhibit the activities of solute carrier uptake transporters and/or ATP-binding cassette efflux pumps. Some are substrates for transporters or can regulate their expression. The relatively low human concentration of plastic additives from environmental or dietary exposure is a key parameter to consider to appreciate the in vivo relevance of plasticizer-transporter interactions and their consequences for human toxicokinetics and toxicity of plastic additives, although even low concentrations of pollutants (in the nM range) may have clinical effects. Existing data about interactions of plastic additives with drug transporters remain somewhat sparse and incomplete. A more systematic characterization of plasticizer-transporter relationships is needed. The potential effects of chemical additive mixtures towards transporter activities and the identification of transporter substrates among plasticizers, as well as their interactions with transporters of emerging relevance deserve particular attention. A better understanding of the human toxicokinetics of plastic additives may help to fully integrate the possible contribution of transporters to the absorption, distribution, metabolism and excretion of plastics-related chemicals, as well as to their deleterious effects towards human health.


Assuntos
Poluentes Ambientais , Plásticos , Humanos , Plásticos/toxicidade , Plásticos/metabolismo , Toxicocinética , Plastificantes/toxicidade , Proteínas de Membrana Transportadoras , Poluentes Ambientais/toxicidade , Interações Medicamentosas
15.
Biofabrication ; 14(3)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35696992

RESUMO

In recent decades, 3Din vitrocultures of primary human hepatocytes (PHHs) have been increasingly developed to establish models capable of faithfully mimicking main liver functions. The use of 3D bioprinting, capable of recreating structures composed of cells embedded in matrix with controlled microarchitectures, is an emergent key feature for tissue engineering. In this work, we used an extrusion-based system to print PHH in a methacrylated gelatin (GelMa) matrix. PHH bioprinted in GelMa rapidly organized into polarized hollow spheroids and were viable for at least 28 d of culture. These PHH were highly differentiated with maintenance of liver differentiation genes over time, as demonstrated by transcriptomic analysis and functional approaches. The cells were polarized with localization of apico/canalicular regions, and displayed activities of phase I and II biotransformation enzymes that could be regulated by inducers. Furthermore, the implantation of the bioprinted structures in mice demonstrated their capability to vascularize, and their ability to maintain human hepatic specific functions for at least 28 d was illustrated by albumin secretion and debrisoquine metabolism. This model could hold great promise for human liver tissue generation and its use in future biotechnological developments.


Assuntos
Bioimpressão , Animais , Bioimpressão/métodos , Gelatina/química , Hepatócitos/metabolismo , Humanos , Hidrogéis/química , Camundongos , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química
16.
Sci Rep ; 11(1): 515, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436872

RESUMO

Generating the proliferation of differentiated normal adult human hepatocytes is a major challenge and an expected central step in understanding the microenvironmental conditions that regulate the phenotype of human hepatocytes in vitro. In this work, we described optimized 3D culture conditions of primary human hepatocytes (PHH) to trigger two waves of proliferation and we identified matrix stiffness and cell-cell interactions as the main actors necessary for this proliferation. We demonstrated that DNA replication and overexpression of cell cycle markers are modulate by the matrix stiffness while PHH cultured in 3D without prior cellular interactions did not proliferate. Besides, we showed that PHH carry out an additional cell cycle after transient inhibition of MAPK MER1/2-ERK1/2 signaling pathway. Collagen cultured hepatocytes are organized as characteristic hollow spheroids able to maintain survival, cell polarity and hepatic differentiation for long-term culture periods of at least 28 days. Remarkably, we demonstrated by transcriptomic analysis and functional experiments that proliferating cells are mature hepatocytes with high detoxication capacities. In conclusion, the advanced 3D model described here, named Hepoid, is particularly relevant for obtaining normal human proliferating hepatocytes. By allowing concomitant proliferation and differentiation, it constitutes a promising tool for many pharmacological and biotechnological applications.


Assuntos
Técnicas de Cultura de Células/métodos , Proliferação de Células , Hepatócitos/fisiologia , Esferoides Celulares , Comunicação Celular , Ciclo Celular , Diferenciação Celular , Polaridade Celular , Sobrevivência Celular , Células Cultivadas , Colágeno , Replicação do DNA , Elasticidade , Humanos , Sistema de Sinalização das MAP Quinases
17.
Eur J Drug Metab Pharmacokinet ; 46(5): 625-635, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34275128

RESUMO

BACKGROUND AND OBJECTIVES: Equilibrative nucleoside transporter (ENT) 1 is a widely-expressed drug transporter, handling nucleoside analogues as well as endogenous nucleosides. ENT1 has been postulated to be inhibited by some marketed tyrosine kinase inhibitors (TKIs). To obtain insights into this point, the interactions of 24 TKIs with ENT1 activity have been analyzed. METHODS: Inhibition of ENT1 activity was investigated in vitro through quantifying the decrease of [3H]-uridine uptake caused by TKIs in HAP1 ENT2-knockout cells, exhibiting selective ENT1 expression. TKI effects towards ENT1-mediated transport were additionally characterized in terms of their in vivo relevance and of their relationship to TKI molecular descriptors. Putative transport of the TKI lorlatinib by ENT1/ENT2 was analyzed by LC-MS/MS. RESULTS: Of 24 TKIs, 12 of them, each used at 10 µM, were found to behave as moderate or strong inhibitors of ENT1, i.e., they decreased ENT1 activity by at least 35%. This inhibition was concentration-dependent for at least the strongest ones (IC50 less than 10 µM) and was correlated with some molecular descriptors, especially with atom-type E-state indices. Lorlatinib was notably a potent in vitro inhibitor of ENT1/ENT2 (IC50 values around 1.0-2.5 µM) and was predicted to inhibit these nucleoside transporters at relevant clinical concentrations, without, however, being a substrate for them. CONCLUSION: Our data unambiguously add ENT1 to the list of drug transporters inhibited by TKIs, especially by lorlatinib. This point likely merits attention in terms of possible drug-drug interactions, notably for nucleoside analogues, whose ENT1-mediated uptake into their target cells may be hampered by co-administrated TKIs such as lorlatinib.


Assuntos
Transportador Equilibrativo 1 de Nucleosídeo/antagonistas & inibidores , Transportador Equilibrativo 2 de Nucleosídeo/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Aminopiridinas/administração & dosagem , Aminopiridinas/farmacologia , Linhagem Celular Tumoral , Cromatografia Líquida , Relação Dose-Resposta a Droga , Transportador Equilibrativo 2 de Nucleosídeo/genética , Técnicas de Inativação de Genes , Humanos , Concentração Inibidora 50 , Lactamas/administração & dosagem , Lactamas/farmacologia , Inibidores de Proteínas Quinases/administração & dosagem , Pirazóis/administração & dosagem , Pirazóis/farmacologia , Espectrometria de Massas em Tandem
18.
Eur J Pharm Biopharm ; 164: 36-53, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33895293

RESUMO

There are few studies in humans dealing with the relationship between physico-chemical properties of drugs and their systemic bioavailability after administration via oral inhalation route (Fpulm). Getting further insight in the determinants of Fpulm after oral pulmonary inhalation could be of value for drugs considered for a systemic delivery as a result of poor oral bioavailability, as well as for drugs considered for a local delivery to anticipate their undesirable systemic effects. To better delineate the parameters influencing the systemic delivery after oral pulmonary inhalation in humans, we studied the influence of physico-chemical and permeability properties obtained in silico on the rate and extent of Fpulm in a series of 77 compounds with or without marketing approval for pulmonary delivery, and intended either for local or for systemic delivery. Principal component analysis (PCA) showed mainly that Fpulm was positively correlated with Papp and negatively correlated with %TPSA, without a significant influence of solubility and ionization fraction, and no apparent link with lipophilicity and drug size parameters. As a result of the small sample set, the performance of the different models as predictive of Fpulm were quite average with random forest algorithm displaying the best performance. As a whole, the different models captured between 50 and 60% of the variability with a prediction error of less than 20%. Tmax data suggested a significant positive influence of lipophilicity on absorption rate while charge apparently had no influence. A significant linear relationship between Cmax and dose (R2 = "0.79) highlighted that Cmax was primarily dependent on dose and absorption rate and could be used to estimate Cmax in humans for new inhaled drugs.


Assuntos
Preparações Farmacêuticas/administração & dosagem , Administração por Inalação , Administração Oral , Disponibilidade Biológica , Humanos , Pulmão/efeitos dos fármacos , Permeabilidade , Preparações Farmacêuticas/metabolismo , Solubilidade
19.
Expert Opin Drug Metab Toxicol ; 17(3): 259-271, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33292029

RESUMO

Introduction: Janus kinase inhibitors (JAKinibs) constitute an emerging and promising pharmacological class of anti-inflammatory or anti-cancer drugs, used notably for the treatment of rheumatoid arthritis and some myeloproliferative neoplasms.Areas covered: This review provides an overview of the interactions between marketed JAKinibs and major uptake and efflux drug transporters. Consequences regarding pharmacokinetics, drug-drug interactions and toxicity are summarized.Expert opinion: JAKinibs interact in vitro with transporters in various ways, as inhibitors or as substrates of transporters or as regulators of transporter expression. This may theoretically result in drug-drug interactions (DDIs), with JAKinibs acting as perpetrators or as victims, or in toxicity, via impairment of thiamine transport. Clinical significance in terms of DDIs for JAKinib-transporter interactions remains however poorly documented. In this context, the in vivo unbound concentration of JAKinibs is likely a key parameter to consider for evaluating the clinical relevance of JAKinibs-mediated transporter inhibition. Additionally, the interplay with drug metabolism as well as possible interactions with transporters of emerging importance and time-dependent inhibition have to be taken into account. The role drug transporters may play in controlling cellular JAKinib concentrations and efficacy in target cells is also an issue of interest.


Assuntos
Interações Medicamentosas , Inibidores de Janus Quinases/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Animais , Transporte Biológico/efeitos dos fármacos , Humanos , Preparações Farmacêuticas/metabolismo , Farmacocinética , Tiamina/metabolismo , Fatores de Tempo
20.
Fundam Clin Pharmacol ; 35(5): 919-929, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33523504

RESUMO

Organic cation transporter (OCT) 3 (SLC22A3) is a widely expressed drug transporter, handling notably metformin and platinum derivatives, as well as endogenous compounds like monoamine neurotransmitters. OCT3 has been shown to be inhibited by a few marketed tyrosine kinase inhibitors (TKIs). The present study was designed to determine whether additional TKIs may interact with OCT3. For this purpose, the effects of 25 TKIs toward OCT3 activity were analyzed using OCT3-overexpressing HEK293 cells. 13/25 TKIs, each used at 10 µM, were found to behave as moderate or strong inhibitors of OCT3 activity, that is, they decreased OCT3-mediated uptake of the fluorescent dye 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide by at least 50% or 80%, respectively. This OCT3 inhibition was correlated to some molecular descriptors of TKIs, such as the percentage of H atoms and that of cationic forms at pH = 7.4. It was concentration-dependent, notably for brigatinib, ceritinib, and crizotinib, which exhibited low half maximal inhibitory concentration (IC50 ) values in the 28-106 nM range. Clinical concentrations of these three marketed TKIs, as well as those of pacritinib, were next predicted to inhibit in vivo OCT3 activity according to regulatory criteria. Cellular TKI accumulation experiments as well as trans-stimulation assays, however, demonstrated that OCT3 does not transport brigatinib, ceritinib, crizotinib, and pacritinib, thus discarding any implication of OCT3 in the pharmacokinetics of these TKIs. Taken together, these data suggest that some TKIs may act as potent inhibitors of OCT3 activity, which may have consequences in terms of drug-drug interactions and toxicity.


Assuntos
Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Transporte Biológico/efeitos dos fármacos , Crizotinibe/farmacologia , Células HEK293/efeitos dos fármacos , Humanos , Compostos Organofosforados/farmacologia , Pirimidinas/farmacologia , Sulfonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA