Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Transfusion ; 58(7): 1671-1681, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29664127

RESUMO

BACKGROUND: Extracellular nucleic acids circulate in plasma. They are expected to be present in manufactured blood products eligible for transfusion, but little is known about their biological activity on human cells. The aim of this study is to investigate whether cell-free nucleic acids (CFNAs) are present and biologically active in red blood cell units (RBCUs), fresh frozen plasmas, and platelet concentrates. STUDY DESIGN AND METHODS: CFNAs were extracted from RBCUs, fresh frozen plasma, and platelet concentrates. Their nature and structure were analyzed by regular methods of nucleic acid detection/quantification. A normalized polymerase chain reaction combining amplification of a CFNA marker (Alu 115) and amplification of an internal nonhuman DNA control spiked in all samples (phiX 174) was developed to study CFNA release after RBCU storage. The impact of CFNAs on gene regulation was tested by microarray after coculture with peripheral blood mononuclear cells and macrophages. RESULTS: Extracellular double-stranded DNA was present in all blood products, with higher amounts found in cellular suspensions (RBCUs and platelet concentrates). Storage up to 40 days did not influence release from RBCUs, and CFNA amount varied considerably from one unit to another. Microarray experiments showed that exposition of macrophages to CFNA increased the expression of genes involved in the innate immune response including chemokines, chemokine receptors, and receptors of the innate response. CONCLUSION: CFNAs are present in blood products. Immunoregulatory properties of CFNA are shown in vitro, providing new insights on biologically active components of blood products besides those for intended therapeutic use.


Assuntos
Plaquetas/imunologia , Plaquetas/metabolismo , Ácidos Nucleicos Livres/análise , Eritrócitos/imunologia , Eritrócitos/metabolismo , Imunidade Inata/imunologia , Humanos
2.
Int J Cancer ; 135(6): 1381-9, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24347514

RESUMO

Glioblastoma is a deadly malignant brain tumor and one of the most incurable forms of cancer in need of new therapeutic targets. As some cancers are known to be caused by a virus, the discovery of viruses could open the possibility to treat, and perhaps prevent, such a disease. Although an association with viruses such as cytomegalovirus or Simian virus 40 has been strongly suggested, involvement of these and other viruses in the initiation and/or propagation of glioblastoma remains vague, controversial and warrants elucidation. To exhaustively address the association of virus and glioblastoma, we developed and validated a robust metagenomic approach to analyze patient biopsies via high-throughput sequencing, a sensitive tool for virus screening. In addition to traditional clinical diagnostics, glioblastoma biopsies were deep-sequenced and analyzed with a multistage computational pipeline to identify known or potentially discover unknown viruses. In contrast to the studies reporting the presence of viral signatures in glioblastoma, no common or recurring active viruses were detected, despite finding an antiviral-like type I interferon response in some specimens. Our findings highlight a discrete and non-specific viral signature and uncharacterized short RNA sequences in glioblastoma. This study provides new insights into glioblastoma pathogenesis and defines a general methodology that can be used for high-resolution virus screening and discovery in human cancers.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/virologia , Citomegalovirus/imunologia , Glioblastoma/genética , Glioblastoma/virologia , Interferon Tipo I/imunologia , Anticorpos Antivirais/sangue , Neoplasias Encefálicas/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Metagenômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA