Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39124455

RESUMO

La0.6Sr0.4CoO3 (LSC) coatings with a thickness of 50-100 µm were deposited on Fe-25Cr ferritic stainless steel (DIN 50049) via screen printing. The required suspension had been prepared using fine LSC powders synthesised using EDTA gel processes. In its bulk form, the LSC consisted entirely of the rhombohedral phase with space group R-3c, and it exhibited high electrical conductivity (~144 S·cm-1). LSC-coated steel was oxidised in air at 1073 K, i.e., under conditions corresponding to SOFC cathode operation, for times of up to 144 h. The in situ electrical resistance of the steel/La0.6Sr0.4CoO3 layered system during oxidation was measured. The products formed on the samples after the oxidation reaction resulting from exposure to the corrosive medium were investigated using XRD, SEM-EDS, and TEM-SAD. The microstructural, nanostructural, phase, and chemical analysis of films was performed with a focus on the film/substrate interface. It was determined that the LSC coating interacts with the oxidised steel in the applied conditions, and a multi-layer interfacial zone is formed. Detailed TEM-SAD observations indicated the formation of a main layer consisting of SrCrO4, which was the reaction product of (La,Sr)CoO3, and the Cr2O3 scale formed on the metal surface. The formation of the SrCrO4 phase resulted in improved electrical conductivity of the investigated metal/ceramics layered composite material, as demonstrated by the low area-specific resistance values of 5 mΩ·cm2, thus making it potentially useful as a SOFC interconnect material operating at the tested temperature. In addition, the evaporation rate of chromium measured for the uncoated steel and the steel/La0.6Sr0.4CoO3 layered system likewise indicates that the coating is capable of acting as an effective barrier against the formation of volatile compounds of chromium.

2.
Materials (Basel) ; 17(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38998390

RESUMO

This paper focuses on high-entropy spinels, which represent a rapidly growing group of materials with physicochemical properties that make them suitable for hydrogen energy applications. The influence of high-pressure pure hydrogen on the chemical stability of three high-entropy oxide (HEO) sinter samples with a spinel structure was investigated. Multicomponent HEO samples were obtained via mechanochemical synthesis (MS) combined with high-temperature thermal treatment. Performing the free sintering procedure on powders after MS at 1000 °C for 3 h in air enabled achieving single-phase (Cr0.2Fe0.2Mg0.2Mn0.2Ni0.2)3O4 and (Cu0.2Fe0.2Mg0.2Ni0.2Ti0.2)3O4 powders with a spinel structure, and in the case of (Cu0.2Fe0.2Mg0.2Ti0.2Zn0.2)3O4, a spinel phase in the amount of 95 wt.% was achieved. A decrease in spinel phase crystallite size and an increase in lattice strains were established in the synthesized spinel powders. The hydrogenation of the synthesized samples in a high-pressure hydrogen atmosphere was investigated using Sievert's technique. The results of XRD, SEM, and EDS investigations clearly showed that pure hydrogen at temperatures of up to 250 °C and a pressure of up to 40 bar did not significantly impact the structure and microstructure of the (Cr0.2Fe0.2Mg0.2Mn0.2Ni0.2)3O4 ceramic, which demonstrates its potential for application in hydrogen technologies.

3.
Materials (Basel) ; 17(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38730836

RESUMO

This study investigated the effect of fluoride and boron compound additives on the synthesis and hydration process of calcium aluminate (CA2). The analysis showed that the temperature of the full synthesis of CA2 without mineralizing additives was 1500 °C. However, the addition of fluorine and boron compounds at 1% and 3% significantly reduced the synthesis temperature to a range of 1100-1300 °C. The addition of fluoride compounds did not result in the formation of fluoride compounds from CaO and Al2O3, except for the calcium borate phase (Ca3(BO3)2) under certain conditions. In addition, the cellular parameters of the synthesized calcium aluminate phases were not affected by the use of these additives. Hydration studies showed that fluoride additives accelerate the hydration process, potentially improving mechanical properties, while boron additives slow down the reaction with water. These results highlight the relevance of fluoride and boron additives to the synthesis process and hydration kinetics of calcium aluminate, suggesting the need for further research to optimize their application in practice. TG studies confirmed the presence of convergence with respect to X-ray determinations made. SEM, EDS and elemental concentration maps confirmed the presence of a higher Al/Ca ratio in the samples and also showed the presence of hexagonal and regular hydration products.

4.
Materials (Basel) ; 16(17)2023 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-37687744

RESUMO

In the presented study, ye'elimite-aluminate-calcium (YAC) cement was synthesized. Complete synthesis of crystalline phases was achieved at a temperature of 1300 °C, which is 150 °C lower than the temperature standardly used in the processes of obtaining calcium aluminate cements (CAC). The greatest amount of ye'elimite phase (Klein complex), roughly 87% by mass, was acquired utilizing a sulphur ion transporter derived from artificial dihydrate gypsum obtained in the flue gas desulphurization process (variation I). In the case of anhydrite, the amount of synthesized crystalline ye'elimite in the clinker was 67% by weight (variant II). Depending on the synthesis conditions in the clinkers, the quantity of obtained calcium aluminates (C12A7, CA, and CA2) ranged from 20 to 40% by weight. Studies on the hydration process of YAC cement samples showed that the main products are hydrated calcium aluminates and dodecahydrate calcium alumino-sulphate. In sinters of YAC and OPC, no crystalline ettringite was observed. Hydration analysis of Chinese cement revealed the presence of crystalline ettringite and dodecahydrate calcium alumino-sulphate, as well as hydrated calcium silicates of the CSH type accompanied with pseudo-crystalline Al(OH)3. The obtained clinkers from variants I and II constitute a special binder, which, due to its phase composition after hydration, can be used in the construction of reactors for biogas production in eco-energy applications.

5.
Materials (Basel) ; 16(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37374418

RESUMO

The presented work concerns the study of the changes in the phase composition of calcium aluminoferrites which depend on the synthesis conditions and the selection of the Al2O3/Fe2O3 molar ratio (A/F). The A/F molar ratio extends beyond the limiting composition of C6A2F (6CaO·2Al2O3·Fe2O) towards phases richer in Al2O3. An increase in the A/F ratio above unity favours the formation of other crystalline phases such as C12A7 and C3A, in addition to calcium aluminoferrite. Slow cooling of melts characterised by an A/F ratio below 0.58, results in the formation of a single calcium aluminoferrite phase. Above this ratio, the presence of varying contents of C12A7 and C3A phases was found. The process of rapid cooling of the melts with an A/F molar ratio approaching the value of four favours the formation of a single phase with variable chemical composition. Generally, an increase in the A/F ratio above the value of four generates the formation of a calcium aluminoferrite amorphous phase. The rapidly cooled samples with compositions of C22.19A10.94F and C14.61A6.29F were fully amorphous. Additionally, this study shows that as the A/F molar ratio of the melts decreases, the elemental cell volume of the calcium aluminoferrites decreases.

6.
Materials (Basel) ; 16(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36984110

RESUMO

This paper presents a study related to the biological degradation of a tricalcium aluminate (C3A) phase treated with reactive media from the agricultural industry. During one month of setting and hardening, synthetic C3A was subjected to corrosion in corn silage, pig slurry and chicken manure. The hardening process of the C3A phase in water was used as a reference sample. The phase composition and microstructure of the hydrating tricalcium aluminate slurries were characterised by X-ray diffraction (XRD), thermal analysis (DTA/TG/DTG/EGA), scanning microscopy (SEM, EDS) and infrared spectroscopy (FT-IR). In the samples studied, it was observed that the qualitative and quantitative phase composition of the synthetic tricalcium aluminate preparations changed depending on the corrosion exposure conditions. The main crystalline phases formed by the hydration of the examined samples in water as well as in corrosive media were the catoite (Ca3Al2(OH)12) and hydrocalumite (Ca2Al(OH)7·3H2O) phases. Detailed analysis showed the occurrence of secondary crystallisation in hydrating samples and the phases were mainly calcium carbonates (CaCO3) with different crystallite sizes. In the phase composition of the C3A pastes, varying amounts of aluminium hydroxides (Al(OH)3) were also present. The crystalline phases formed as a result of secondary crystallisation represented biological corrosion products, probably resulting from the reaction of hydrates with secondary products resulting from the metabolic processes of anaerobic bacterial respiration (from living matter) associated with the presence of bacteria in the reaction medium. The results obtained contribute towards the development of fast-acting and bio-corrosion-resistant special cements for use in bioenergetics.

7.
Materials (Basel) ; 15(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35329553

RESUMO

Composite tetragonal zirconia (3Y-TZP) sinters with Al2O3 contents of 0, 1, 5, 10 and 15 mol% were obtained from a 3-YSZ powder prepared using the gelatin method, and the influence of alumina addition on the mechanical and electrical properties of the obtained sinters was investigated. Al2O3 was added via two different methods, namely during the preparation of the 3-YSZ powder and via impregnation using an alcohol solution of aluminum nitrate. The obtained green bodies were sintered for 2 h in air at 1773 K. The structure and morphology of the two series of sinters were investigated using XRD and SEM-EDS, their electrical properties were determined using impedance spectroscopy, and their hardness and critical stress intensity factor were measured using the Vickers indentation test. We established that both the amount of alumina and the method used to introduce it into the 3Y-TZP matrix significantly affect the physicochemical properties of the obtained polycrystalline material. The 3-YSZ/10 mol% Al2O3 sinter that had Al2O3 introduced during the preparation of the 3-YSZ powder was found to exhibit the most advantageous mechanical and electrical properties while still having sufficiently low porosity.

8.
Materials (Basel) ; 15(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35269162

RESUMO

The paper presents studies on the early stages of biological corrosion of ordinary Portland cements (OPC) subjected to the reactive media from the agricultural industry. For ten months, cement pastes of CEM I type with various chemical compositions were exposed to pig slurry, and water was used as a reference. The phase composition and structure of hydrating cement pastes were characterized by X-ray diffraction (XRD), thermal analysis (DTA/TG/DTG/EGA), and infrared spectroscopy (FT-IR). The mechanical strength of the cement pastes was examined. A 10 to 16% decrease in the mechanical strength of the samples subjected to pig slurry was observed. The results indicated the presence of thaumasite (C3S·CO2·SO3·15H2O) as a biological corrosion product, likely formed by the reaction of cement components with living matter resulting from the presence of bacteria in pig slurry. Apart from thaumasite, portlandite (Ca(OH)2)-the product of hydration-as well as ettringite (C3A·3CaSO4·32H2O) were also observed. The study showed the increase in the calcium carbonate (CaCO3) phase. The occurrence of unreacted phases of cement clinker, i.e., dicalcium silicate (C2S) and tricalcium aluminate (C3A), in the samples was confirmed. The presence of thaumasite phase and the exposure condition-dependent disappearance of CSH phase (calcium silicate hydrate), resulting from the hydration of the cements, were demonstrated.

9.
Materials (Basel) ; 15(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35744140

RESUMO

The results of plasmochemical modification on Crofer 22APU ferritic stainless steel with a SiCxNy:H layer, as well as the impact of these processes on the increase in usability of the steel as intermediate-temperature solid oxide fuel cell (IT-SOFC), interconnects, are presented in this work. The layer was obtained using Radio-Frequency Plasma-Activated Chemical Vapor Deposition (RF PA CVD, 13.56 MHz) with or without the N+ ion modification process of the steel surface. To determine the impact of the surface modification on the steel's resistance to high-temperature corrosion and on its mechanical properties, the chemical composition, atomic structure, and microstructure were investigated by means of IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Microhardness, Young's modulus, wear rate, as well as electrical resistance, were also determined. Micromechanical experiments showed that the plasmochemical modification has a positive influence on the surface hardness and Young's modulus of the investigated samples. High-temperature oxidation studies performed for the samples indicate that N+ ion modification prior to the deposition of the SiCxNy:H layer improves the corrosion resistance of Crofer 22APU steel modified via CVD. The area-specific resistance of the studied samples was 0.01 Ω·cm2, which is lower than that of bare steel after 500 h of oxidation at 1073 K. It was demonstrated that the deposition of the SiCxNy:H layer preceded by N+ ion modification yields the best properties.

10.
Materials (Basel) ; 14(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34771985

RESUMO

The ß-γ polymorphic transition of calcium orthosilicate (C2S) is a key phenomenon in cement chemistry. During this transition, the compound expands due to structural changes and a significant reduction in its density is observed, leading to its disintegration into a powder with a very high specific surface area. Owing to this tendency of the C2S material to "self-disintegrate", its production is energy-efficient and thus environmentally friendly. A physicochemical study of the self-disintegration process was conducted with the aim of determining how the amount of dodecacalcium hepta-aluminate (C12A7) in calcium orthosilicate (C2S) affects the temperature at which the polymorphic transi-tions from α'L-C2S to ß-C2S and from ß-C2S to γ-C2S undergo stabilization. The applied techniques included differential thermal analysis (DTA), calorimetry and X-ray diffraction (XRD), and they made it possible to determine what C2S/C12A7 phase ratio in the samples and what cooling rate constitute the optimal conditions of the self-disintegration process. The optimal cooling rate for C2S materials with a C12A7 content of up to 60 wt% was determined to be 5 K·min-1. The optimal mass ratio of C2S/C12A7 was found to be 70/30, which ensures both efficient self-disintegration and desirable grain size distribution.

11.
Materials (Basel) ; 14(7)2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33808447

RESUMO

This paper presents the scientific problem of the biological corrosion of Portland cements and its effects on the phase composition of cement pastes after the corrosion process in the environment of reactive media from the agricultural industry. Seven Portland cements produced from different cement plants exposed to pig slurry and water as a reference medium for a period of six weeks were tested. After the exposure process in both of the above-mentioned reaction environments, the hydrating cement pastes were characterized in terms of their phase composition using the XRD method and were also subjected to morphological observations and a chemical composition analysis with the application of SEM and EDS methods. The results of these studies indicate the presence of a biological corrosion product in the form of taumasite [C3S·CO2·SO3·15H2O], which is a phase formed as a result of the reaction of dead matter (cement paste) with living matter, caused by the presence of bacteria in pig slurry. In addition to taumasite, the tested samples also showed the presence of the hydration product of Portland cements named portlandite (Ca(OH)2). Moreover, unreacted phases of cement clinker, i.e., dicalcium silicate (C2S) and tricalcium aluminate (C3A), were detected. Based on microscopic observations and analyses of the chemical composition of selected areas of the samples, the presence of the taumasite phase and compact areas of pseudo-crystalline C-S-H phases with different morphological structures, derived from the hydration products of cements doped with ions originating from the corrosive environment, were confirmed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA