Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 414(8): 2651-2660, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35165778

RESUMO

In this work, green-emitting carbon quantum dots were successfully prepared through a facile one-step solid-state reaction method. The obtained green-emitting carbon dots (G-CDs) showed good fluorescence stability in NaCl aqueous solution and different pH values. Moreover, the G-CDs showed high sensitivity and selectivity for detecting hypochlorite by both fluorometry and colorimetry. Under the optimized condition, a highly sensitive detection of hypochlorite was established in the range of 0.2-100 µM and 10-150 µM for fluorescent and colorimetric methods, respectively. The corresponding limits of detection (LOD) were 0.0781 µM and 1.82 µM, respectively. Therefore, the G-CDs were successfully applied to determinate hypochlorite in actual water samples. In addition, a paper-based sensor loading with the G-CDs was also developed for rapid visual detection of hypochlorite. The results suggested that the G-CDs could be a promising candidate to detect hypochlorite.

2.
Mikrochim Acta ; 189(11): 415, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36217040

RESUMO

An enhanced ratiometric fluorescence sensor was built for on-site visual detection of doxycycline (DOX) through the interaction with bovine serum albumin on the surface of red emissive copper nanoclusters. Upon the addition of weakly fluorescent DOX, the red fluorescence from copper nanoclusters gradually decreased through the inner-filter effect (IFE), while a green fluorescence appears and significantly increases, forming an interesting fluorescent isosbestic point, which was assigned to DOX due to sensitization effect of bovine serum albumin. On the basis of this ratiometric fluorescence, the system possessed good limit of detection (LOD) of 45 nM and excellent selectivity for DOX over other tetracyclines. Based on these findings, a paper-based sensor has been fabricated for distinct visual detection of trace DOX and combined with smartphone color recognizer for quantitative detection of DOX (LOD = 83 nM). This method shows broad application prospects in environmental monitoring and food safety.


Assuntos
Cobre , Nanopartículas Metálicas , Antibacterianos , Doxiciclina , Soroalbumina Bovina , Espectrometria de Fluorescência/métodos , Tetraciclinas
3.
J Environ Sci (China) ; 111: 93-103, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34949377

RESUMO

Nonylphenol (NP) residues, as a typical endocrine disrupting chemical (EDC), frequently exist in sewage, surface water, groundwater and even drinking water, which poses a serious threat to human health due to its bioaccumulation. In order to remove NP, a series of MIL-100(Fe)/ZnFe2O4/flake-like porous carbon nitride (MIL/ZC) was synthesized through in-situ synthesis at room temperature. High performance of ternary MIL/ZC is used to degrade NP under visible light irradiation. The results show that 30MIL/ZC2 (20 wt.% ZnFe2O4) ternary composite had the best photocatalytic activity (99.84%) when the dosage was 30 mg. Further mechanism analysis shows that the excellent photocatalytic activity of 30MIL/ZC2 could be ascribed to the double charge transfer process between flake-like porous carbon nitride (PCN) and other catalysts in the ternary heterojunction, and the separation of photogenerated electron-hole pairs was more effective. In addition, the 30MIL/ZC2 also showed high stability after five cycles of the photodegradation reaction. Furthermore, the active substance (•O2-) was considered to be the main active substance in the NP degradation process. Based on the research results, the possible photocatalytic reaction mechanism of 30MIL/ZC2 ternary composite was proposed and discussed in detail.


Assuntos
Luz , Nitrilas , Fenóis , Fotólise , Porosidade
4.
Food Chem ; 398: 133884, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35964575

RESUMO

Development of selective and sensitive methods for the detection of 2, 6-dipicolinic acid (DPA), a biomarker produced by bacterial spores, is of great significance for maintaining public health and food safety. Herein, a ratiometric fluorescence strategy using graphene carbon nitride (g-C3N4) coupled with Eu3+ is designed for the assay of DPA. As the concentration of DPA increases, the emission intensity of g-C3N4 kept constant which acted as a stable internal reference, while the fluorescence of Eu3+ was enhanced obviously due to the antenna effect. The linear calibration ranged from 0.1 to 15 µM with a detection limit of 13 nM was obtained. More Importantly, a paper-based sensor with a smartphone was successfully combined to perform colorimetric and visual detection of DPA in situ. This method has good performance for the detection of DPA, which is expected to broaden the application prospects of preliminary biomarker monitoring.


Assuntos
Antraz , Antraz/diagnóstico , Antraz/microbiologia , Biomarcadores , Európio , Corantes Fluorescentes , Humanos , Nitrilas , Ácidos Picolínicos , Smartphone
5.
Talanta ; 255: 124205, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36580812

RESUMO

Selective and sensitive determination of ceftriaxone sodium (CTR) trace residues is of great importance for food safety and environmental protection. Herein, a determination method based on ratiometric fluorescence and colorimetric method with nitrogen-rich carbon dots as fluorophore is reported. The functional surfaces of indole-derived carbon dots (I-CDs) containing nitrogen and carbon groups can be selectively bound to CTR by electrostatic forces, leading to a hindered conjugation system and deprotonation of the amine on the pyrrole ring, resulting in a distinct variety in fluorescence and absorption wavelength and intensity. With the addition of CTR, the fluorescence at 577 nm can be selectively quenched, accompanied by a new emission peak appeared at 507 nm. The limits of detection (LODs) were estimated to be 19.7 nM and 78.0 nM based on the ratiometric fluorescence method and colorimetric method, respectively. Finally, the in situ visual quantitative determination of CTR using this nanosensor was achieved by combining with the color recognizer of a smartphone, and the method was further validated by spike and recovery test in real water samples including milk, seawater, and tap water.


Assuntos
Ceftriaxona , Pontos Quânticos , Carbono/química , Nitrogênio , Pontos Quânticos/química , Corantes Fluorescentes/química , Água
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 297: 122735, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37080055

RESUMO

2,4,6-trinitrophenyl phenol (TNP) and dichromate (Cr2O72-) have serious toxicological effects on environment. Therefore, it is very important to detect and remove TNP and Cr2O72- in environmental matrix. In this work, a dual-functional UiO type metal-organic framework (Zr-Sti) was synthesized for simultaneous detection and removal of those pollutants in aqueous solution. As for detection, Zr-Sti exhibited sensitive and selective fluorescence response to TNP and Cr2O72- with detection limit below µM level, and possible mechanism behind was proposed and partially supported by experiment data. In addition, adsorption capacity of the prepared Zr-Sti for TNP and Cr2O72- was further investigated to evaluate its performance in pollutant removal from aqueous solution, and the mechanism behinds the obtained high removal efficiency was proposed. These results together with the satisfied recovery for simultaneous detection of TNP and Cr2O72- in real sample, indicate the potential of the prepared Zr-Sti material in the field of environment monitoring and remediation.

7.
Anal Chim Acta ; 1236: 340585, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36396237

RESUMO

Since a vast majority of mercury ion (Hg2+)-responsive fluorescence probes suffer from significant false positive interference in practical applications originating from their fluorescence quenching mechanism, it is still a challenge to develop a fluorescence enhancement sensor for its assay. In this work, single hexagonal boron nitride quantum dots (BNQDs)-based probe was presented for Hg2+ assay in a fluorescence enhancement-based ratiometric manner. When Hg2+ was present, the BNQDs exhibited a new fluorescence emission peak located at 560 nm under 280 nm excitation, while the original blue fluorescence of the probe at 461 nm was quenched, realizing a ratiometric fluorescence response to Hg2+. Furthermore, it is found that fluorescence enhancement at 560 nm was dramatically suppressed under 365 nm excitation, the mechanism behind this phenomenon has been explored by experiments and relevant theories. In addition to high selectivity and detection sensitivity with LOD of 0.7 nM, the prepared probe successfully demonstrated its accuracy in Hg2+ detection in environmental water samples. Moreover, the probe could be adopted for paper sensor design, and an accurate and reliable cell phone-based portable platform was demonstrated for Hg2+ assay with LOD of 1.9 nM, suggesting its potential in point-of-care detection application.


Assuntos
Mercúrio , Pontos Quânticos , Compostos de Boro , Corantes Fluorescentes
8.
Chemosphere ; 289: 133230, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34890611

RESUMO

A series of 0D boron carbon nitride quantum dots (BCNQDs) modified 2D Bi4O5I2 (0D/2D Bi4O5I2/BCNQDs) composites were synthesized and applied to photodegradation of tetracyclines (TCs), including tetracycline (TC) and oxytetracycline (OTC). The Bi4O5I2/BCNQDs (1) (1 mL BCNQDs) composite exhibits the highest photocatalytic performance for TCs degradation. The degradation rate constants of TC and OTC by the optimal sample were 4.95 and 2.17 times that of Bi4O5I2, respectively. This can be attributed to the fact that the narrow bandgap Bi4O5I2 is the electron acceptor, and the oxygen-containing functional group with the negative charge on BCNQDs can promote the formation of photoexcited holes, which makes the effective separation of photoexcited carriers easier. Furthermore, the active substance (h+ and ·O2-) is the major active substance for TCs photodegradation. On this basis, the possible photocatalytic reaction mechanism of Bi4O5I2/BCNQDs (1) composite is proposed. This study provides a new idea for 0D/2D interface engineering of BCNQDs heterojunction.


Assuntos
Pontos Quânticos , Boro , Catálise , Nitrilas , Fotólise , Tetraciclinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA